Wireless Corner

- Naftali (Tuli) Herscovici
. Lincoln Laboratory - Group 61
Massachusetts Institute of Technology

Email: nherscovici@ll.mit.edu

Christos Christodoulou
Department of Electrical and
Computer Engineering

University of New Mexico
Albuquerque, NM 87131-1356 USA
Tel: +1 (505) 277-6580

Fax: +1 (505) 277-1439

E-mail: christos@eece.unm.edu

Taking Advantage of Mutual Coupling in
Radio-Communication Systems Using a
Multi-Port Antenna Array

Frédéric Broydé and Evelyne Clavelier

Excem
12, chemin des Hauts de Clairefontaine, 78580 Maule, France
Tel: + 33 (0) 1 34 75 13 65; Fax: + 33 (0) 1 34 75 13 66; E-mail: fredbroyde@excem.fr, eclavelier@excem.fr

Abstract

This paper relates to the effect of mutual coupling in multi-port antenna arrays, such as those used in MIMO radio-
communication systems. Approaches of different fields of electrical engineering are used to show that the interactions
between antennas may improve performance. In particular, interesting properties may be obtained when the front end of a
receiver is designed as a multiple-input-port and multiple-output-port device, as opposed to multiple independent single-input-
port and single-output-port devices. The case of a receiver front end implementing a MIMO series-series feedback amplifier is

presented in detail.
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1. Introduction

n a recent paper [1], Migliore observed that MIMO radio-com-

munication systems are usually studied using the probabilistic
communication approach. He then offered an intuitive presentation
of MIMO radio-communication systems, from the perspective of
electromagnetics. This approach invited us to question the relation
between some common assumptions used in the probabilistic the-
ory and the underlying physics. For instance, the performance of
MIMO and other multi-antenna radio-communication systems is
often assessed using the assumption of uncoupled channels. This is
clearly an approximation, which fails if the antennas are close to
each other. However, the physical size of the antenna array is often

208

limited by the application, e.g., in the case of portable transceivers.
There is consequently a need to review the effects of antenna sepa-
ration in an array of antennas used as a multi-port, and how such
effects may impact the properties of a radio-communication system
and the design process.

The present paper is intended to be understandable by
antenna and propagation specialists, telecommunication engineers,
and RF front-end designers. It would ideally be a tutorial, if the
field covered was more mature and all desirable results were avail-
able. The paper is better defined as an introduction to an active
research area, based on the discussion of examples. The paper
relates to a multi-port array of dipole antennas used for reception,
shown in Figure 1. The paper discusses the effects of the interac-
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Figure 1. An array of n antennas connected to » uncoupled
two-conductor transmission lines connected to a receiver hav-
ing » input ports.

tions between antennas on the directivity pattern of each channel
and on the correlations between voltages, for different types of
items connected to the antennas. The purpose of this investigation
is to show that a non-conventional radio-receiver front end may
provide improved performance. Two types of non-conventional
receiver front ends will be considered: passive and active, for
which a detailed design example will be provided. A similar but
shorter discussion applies to radio-transmitter front-end designs.
Since the design of such non-conventional radio equipment is the
result of the convergence of several technical fields, we have tried
to present the facts in a manner that may sound convincing to engi-
neers working in the different relevant fields. Unavoidably, spe-
cialists of different areas will find that parts of Section 2 are obvi-
ous.

The examples treated in this paper involve antennas,
transmission lines, and circuits considered in the context of a
deterministic plane wave impinging on the antenna array used for
reception, or in the context of the probabilistic properties of a two-
dimensional Rayleigh channel. We decided to use a single generic
and flexible mathematical software program (MathCAD®), as
opposed to multiple specialized programs (e.g., NEC for the anten-
nas, SPICE for the circuits), which are not appropriate for the
whole problem and would therefore require transfers of data relat-
ing to partial results. Additionally, each specialized tool would
only be familiar — and hence convincing — to engineers of a single
field. However, there are restrictions inherent in this possibility: we
limit the discussion to academic arrays of dipole antennas, and the
examples only cover antenna distances larger than 0.174.

2. Review of Concepts Applicable to
Arrays of Antennas

This section provides basic results of antenna theory (Sec-
tions 2.1 and Appendix A), circuit theory (Section 2.2), telecom-
munication theory (Section2.3 and Appendix B), and transmis-
sion-line theory (Section 2.4 and Appendix C).
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2.1 The Impedance Matrix of
an Array of Antennas

The components of the nxn impedance matrix Z g, of an
array of n antennas are the self- and mutual-impedances of an array
of antennas [2, Chap. 10]. The impedance matrix is non-diagonal
when the interactions between the antennas are non-negligible. The
absolute values of the non-diagonal components of the impedance
matrix are generally larger when the antennas are placed closer to
each other.

The simple calculation of the impedance matrix of an array of
dipole antennas presented in Appendix A and used below is based
on the following approximations:

. The self impedance of an antenna of the array is
computed as if the other antennas were not pre-
sent, whereas it is clear that some currents will
flow along such other antennas when they are left
open-circuited;

. The mutual impedance between two antennas of
the array is computed using a thin-antenna
approximation;

. The mutual impedance between two antennas of
the array is computed as if the other antennas were
not present, whereas it is clear that some currents
will flow along such other antennas when they are
left open-circuited.

We note that according to such simplified calculations, the
open-circuit voltages are the voltages in the absence of other array
elements. This is a coarse approximation in which the mutual
impedances are computed in a manner equivalent to using only one
basis function in the Method of Moments [3]. The accuracy of this
approximation is clearly improved when the distance between the
antennas is increased.

Let us consider that our array of antennas is used for recep-
tion. Let j be an integer such that 1< j <n. We define the voltage

between the terminals of the antenna j when the antenna array sees
a linear multi-port load presenting an impedance matrix Zg;; to be

Vam j» @nd the open-circuit voltage between the terminals of the
antenna j when all antennas are left unconnected to be vy, ;- We
also define the column vector of the voltages V1. Van, 10 bE
V. » and the column vector of the voltages Vyuo1s+s Vanron 10 be
vV,

a0 - Of course, we have

-1 -1 -1
Van =Zsir (Zant +ZSLI) Vanto = (ln + ZantZSL[) Vano, (1)

where 1,, is the identity matrix of size nxn. In the case where all
components of the product of Z,,, by the inverse of Zg;; have an

absolute value much smaller than one, the interaction between the
antennas is also small. In the opposite case, we have to consider
that each component of V,,, is a linear combination of all the

components of V. Consequently, interference between these
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contributions will occur: the directional pattern of each antenna
used for reception will depend on Zg;; . From the reciprocity theo-

rem, the directional pattem of a given antenna array used for
reception, computed for a given Zgy,, is also the directional pat-

tern of this antenna array used for emission, i.e., the radiation pat-
tern, if Zg, is now the impedance matrix of a linear muiti-port

source seen by the antenna array.

2.2 Hermitian Matching and
Maximum Power Transfer

We use "X to denote the transpose of a matrix X, X to
denote the complex conjugate of X, and X' = X to denote the
Hermitian adjoint of X. Since the antenna array will always radiate
some power if it is connected to generators, Z, + Zy,, is positive
definite. Desoer [4, 5] proved that for given Vo and Z,,, the
set of Zg, drawing maximum average power from the array of
antennas is defined by the equation

* -1 * * -1
Zgy, (Zant + Zant) Vaneo =Zon (Zant + Zant) Vonro
2

and is consequently an n(n—1)-dimensional subspace of the n®

dimensional vector space of complex nxn matrices.

When the array of antennas is used for reception, V.0

depends on the angles of incidence of the impinging wave. Among
all the maximizing impedance matrices Zg;;, we may choose

which is independent of V_,,, and this choice is the only

ant 2
impedance matrix that maximizes power transfer for any arbitrary

V0 By definition, a multi-port load connected to the antennas

provides Hermitian matching if Z g, = Zy,, (Hermitian matching

at the near end) or if Z;; = Z5,, (Hermitian matching at the far

end). We may therefore state that an antenna array used for
receiving radio signals delivers maximum power when a Hermitian
matching is provided. In other words, Hermitian matching is a suf-
ficient condition for maximum-power transfer. Let us mention that
if no nonreciprocal devices are used in the array of antennas, Z,,,
is a symmetrical matrix, and the Hermitian adjoint of Z,,, is equal

to the matrix complex conjugate of Z,,, .

2.3 Correlation Coefficients
of the Voltages

Let i and j be integers greater than or equal to one and less
than or equal to ». If we use ¥ to denote the complex conjugate of
a complex number x, the covariance between the complex voltages
delivered by antennas number i and j of the amray of antennas is

<va,,,,-vam j>, and the covariance between the complex open-circuit

voltages across these antennas number i and ; is <va,,,0iva,,,0j>.

Consequently, <Va,,,V > is the nxn covariance matrix of the
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antenna voltages, and < VouoVa n,0> is the covariance matrix of

the open-circuit antenna voltages. We can easily establish [6] that

<Vﬂnf Vanl >

=Zg;(Zsys+Zanr) < antO VanlO>(ZSL1 +Z4nr) "z
3

We will assume that the antennas are only sensitive to the
vertical electric fields, E,, occurring in a given horizontal plane,

like vertical dipoles having their respective electrical centers on
this plane. Although this is only an approximation as explained in
Section 2.1, we will also assume that the open-circuit condition
corresponds to a lack of interaction between the antennas.

The covariances may be computed using additional assump-
tions. We will consider a fixed receiver in a scattering-rich envi-
ronment, More precisely, if we assume two-dimensional Rayleigh

channels, <va,,,0,-vamoj> is the covariance between the vertical
electric fields, E,, at the electrical centers of the antennas, multi-
plied by the effective heights, Hy; and Hg ; of the antennas i

and j for the zenith angle of incidence §=7/2 (seec Appendix A).

We can then use the result of Appendix B on the covariance
between the vertical electric fields to obtain

(ramoramer)=(EL Y Heg Fog o (k). @

where J;, is the Bessel function of the first kind of order 0, k is the
wavenumber, and dij is the distance between antennas number i

and j having the same coordinate, z. The corresponding correlation
coefficients are

<Vant 0iVant Of >

Tl

ﬂ

Vant Oi
&)
ity To (k)
e

In the case where the antennas are identical,

. <vamoivant0j> =Jy (kd,j ) _ (6)

Ao ) pnof

2.4 A Set of
Two-Conductor Interconnections

As shown in Figure 1, each antenna of the antenna array may
be connected to the front end of a multi-port receiver using a two-
conductor interconnection. The impedance matrix, Zg;;, seen by
the array of antennas looking into the near ends of such intercon-
nections is a consequence of the characteristics of the interconnec-
tions and of the impedance matrix, Z;;, of the multi-port con-
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nected to the far ends. Also, the impedance matrix, Zg,,, , seen by

this multi-port looking into the far ends of the interconnections is a
consequence of the characteristics of the interconnections and of
the impedance matrix Z,, . The computation of Zg;;, Zg,,, , and

the voltages, v; ;, across a port of the multi-port is covered in

Appendix C.

Since the characteristic impedance matrix, Z, of the uncou-
pled interconnections, defined by Equation (37) of Appendix C, is
diagonal and Z,, is not diagonal, it is not possible to achieve
image matching, i.e., Zc =Z,, (in the literature on antennas and

transmission lines, “matching” refers to image matching). How-
ever, it is often possible to achieve Hermitian matching (see Sec-
tion 3.3).

3. An Example of a Linear Array of Three
Loosely Coupled Dipole Antennas

This section applies to a first linear array of three parallel
half-wave dipole antennas (side-by-side configuration) for
433 MHz, presenting a A/2 =346 mm spacing between the nearest
array elements. The impedance matrix of the antenna array is com-
puted as

73.1 ~12.5-299; 4.0+17.7j
Zoy =| -12.5-29.9) 73.1 ~12.5-29.971Q, (7)
4.0+17.7j —125-29.9j 73.1

using the approach described in Section2.1. When the anienna
array is not connected to anything, the open-circuit voltage is equal
to the effective height, Hy, given by Equation (26), and

independent from the azimuth, ¢ . For a zenith angle 8 = /2, this

effective height is 220 mm, and the matrix of the correlation coef-
ficients, r;, of open-circuit voltages given by Equation (6) is

1.000 —0.304 0.220
(r;)=|-0304 1.000 -0304). ®)
0.220 -0.304 1.000

Let us now see how this antenna array behaves in two different
applications.

3.1 The Case of a
Conventional Front-End Design

Let us assume that the antenna array is used for reception,
and implemented in the conventional scheme shown in Figure 2.
The analog processing and conversion circuits used in Figure 2
may implement the following main steps: frequency conversion,
filtering and amplification of the intermediate-frequency signal,
and demodulation and analog-to-digital conversion of the I and Q
signals. For example, the multiple-input signal-processing device
used in Figure 2 may implement the following main steps: OFDM
demodulation of each input signal, space-time decoding (MIMO
decoding), channel decoding, and source decoding [7-9].
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In Figure 2, we note that the front end of the receiver — com-
prising the bandpass filters, the low-noise amplifiers (LNAs), and
the RF part of the analog-processing and conversion circuits — is
made of multiple independent single-input-port and single-output-
port devices. Consequently, the impedance matrix, Zg;, seen by

the array of antennas is diagonal.

For instance, let us assume that the antenna array sees uncou-
pled scalar loads of 73.0 1, i.e.,

73.0 00 0.0
ZSLI: OO 73.0 00 Q. (9)
0.0 0.0 730

The column vector, V,,,, of the antenna voltage may be computed
using Equation (1), which shows that each antenna voltage, v, ;,

is now a linear combination of all open-circuit antenna voltages,
VantOls-~sVantOn - The resulting interferences renders the antenna

voltages azimuth dependent. Figure3 shows the corresponding
directivity pattern. Note that in the same field, a single dipole
antenna in free space would deliver 83 pW to a 73.0 @ load. Using
Equation (3), we can compute the correlation coefficients, 7;, of

antenna voltages, and get

1.000 ~0.116-0.012; 0.108
(r,-,-): ~0.116+0.012 1.000 -0.116+0.012 |.
0.108 -0.116-0.012; 1.000
(10)

The absolute values of the correlation coefficients are slightly
reduced by antenna loading. This is somewhat surprising, since
according to our model, the loading creates the interaction between
the antennas, and interactions usually cause correlation. However,
the decorrelation of the received signal by mutual coupling of the
antennas is an established phenomenon [6], although we will show
in Section 4.1 that it does not always occur.

100 550
- 200 400
/ /30() \
N
RS
100
200 300 400 600

;Z%
;

100
200 200 400

f
2o

Figure 2. A conventional three-antenna receiver for MIMO
radio transmission comprises three antennas (100), three
bandpass filters (200), three low-noise amplifiers (300), three
analog-processing and conversion circuits (400), and a multi-
ple-input signal-processing device (550), the output of which is
connected to the destination (600).
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3.2 The Case of a
MIPMOP Front-End Design

We will refer to any multiple-input-port receiver front end (or
multiple-output-port transmitter front end) as a multiple-input port
and multiple-output port (MIPMOP) front end if it is made not
only of multiple-independent single-input-port and single-output-
port devices. The block diagram of a MIMO receiver using such a
MIPMOP front end is shown in Figure 4, in which the front end
comprises a MIPMOP passive linear matching network, the low-
noise amplifier, and the RF part of the analog-processing and con-
version circuits. The MIPMOP passive linear matching network
used in Figure 4 may be such that Hermitian matching is obtained
between Z,, and Zg . In this case, Figure 5 shows the corre-
sponding directivity pattern in the configuration used for Figure 3.
We note that the characteristics shown in Figure 5 do not signifi-
cantly differ from those shown in Figure 3. The matrix of the cor-
relation coefficients, r;, of antenna voltages is

1.000 -0.307-0.028; 0313
(ry)=| -0.307+0.028, 1.000 -0.307+0.028; |.
0.313 ~0.307-0.028; 1.000
1

3.3 Effect of Interconnections

Some sort of interconnection is needed to link each antenna
of the array to a receiver. For instance, let us consider that the
antennas are connected to the receiver using three 0.346-m-long
cables having propagation velocities of 0.659¢;, characteristic
impedances of 75 @ (close to the diagonal elements of Z,,, ), and
attenuations of 0.29 dB/m, all at 433 MHz. The impedance matrix,
Z g, » S€€n by the receiver may be computed using Equations (7)

and Equation (45) of Appendix C. We find that

69.1+11.1j 112+2245 -9.5-7.6;
Zigaw =|112+22.4) 69.1+11.1j 11.2+22.4/ |Q.
95-7.6; 112+224j 69.1+11.1)

(12)

We note that Zg,,, is very different from Z,,, . If the receiver pre-

sents an impedance matrix Z;; equal to Zg,,, we obtain

Hermitian matching between the far end of the cable and the
receiver. Using Equations (7) and (41), we can also compute the
impedance matrix, Z;;, of the recciver that would produce a

Hermitian matching between the antenna array and the near end of
the cable, i.e., Zg; = Z . We find

682-12.5; 11.7-24.3j -10.4+8.1;
Zy =|117-243; 682-12.5j 11.7-243j|Q. (13)
~10.4+8.1j 11.7-243j 682-125;

We note that Equation (13) is not exactly the Hermitian adjoint of
Equation (12). It can be shown that this is a consequence of losses:
if lossless cable had been used, we would have obtained

*®
Zy=ZLgay -
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Figure 4. A three-antenna receiver for MIMO radio transmis-
sion using a MIPMOP front end may, for instance, comprise
three antennas (100), a MIPMOP passive linear matching net-
work (250), and the other blocks mentioned in Figure 2.

4. An Example of a Circular Array of
Six Tightly Coupled Dipole Antennas

This section applies to a circular array of six parallel half-
wave dipole antennas (side-by-side configuration) for 1880 MHz,
presenting a 0.174 = 27 mm spacing between the nearest array ele-
ments. The impedance matrix of the antenna array is computed as

73.1 57.0-12.2j 30.5-33.9;
57.0-12.2f 73.1 57.0-12.2j
4 _|305-339) 570-122) 73.1
= 119.8-37.0j 30.5-33.9; 57.0-122;
30.5-33.97 19.8-37.0; 30.5-33.9,
57.0-12.2; 30.5-33.9; 19.8-37.0/
19.8~37.0j 30.5-33.9; 57.0-12.2j
30.5-33.9; 19.8-37.0; 30.5-33.9;
57.0-122j 30.5-33.9; 19.8-37.0;
73.1 57.0-12.2; 30.5-33.9;
57.0-12.25 73.1 57.0-12.2
30.5-33.9; 57.0-12.2; 73.1
(14)

using the approach described in Section 2.1. For a zenith angle
6 = /2, the open-circuit voltages are 51 mV for an incident field

of 1 V/m. The matrix of the correlation coefficients, 7;, of the

open-circuit voltages is

0.734
0.311
0.146
0.311
0.734
1.000

0.311
0.146
0.311
0.734
1.000
0.734

0.311
0.734
1.000
0.734
0.311
0.146

0.146
0.311
0.734
1.000
0.734
0.311

1.000
0.734

o311
)' 0.146
0.311
0.356

0.734
1.000
0.734
0.311
0.146
0.311

. (15)
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Figure 3. The average powers PO, Pl, and P2, delivered by
each antenna (in £W), and the mean, Py, =(P0+Pl+P2)/3 of
the average powers as a function of the azimuth angle ¢ (in

degrees) for a conventional front-end design receiving an inci-
dent plane wave of 1 V/m (peak) and for & =7/2.

3_;'|3l:|3
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Figure 5. The average powers PO, P1, and P2, delivered by
each antenna (in W), and the mean Py, =(P0+Pl+P2)/3 of
the average powers as a function of the azimuth angle ¢ (in

degrees) for a MIPMOP front-end design providing Hermitian
matching to the antenna array receiving an incident plane
wave of 1 V/m (peak) and for 6 =7/2.

o L L LE ) 10 @ m ns 60

Figure 6. The average powers P0, Pl, P2, P3, P4,and PS5,
delivered by each antenna (in pW), and the mean, Py, of the
average powers as a function of the azimuth angle ¢ (in
degrees) for a conventional front-end design receiving an inci-
dent plane wave of 1 V/m (peak) and for 6 =7/2.

Figure 10. The average powers P0, P1, P2, and P3, delivered >

by the outputs of the MIPMOP amplifier shown in Figure 8 (in
§W) and the mean, Py, of the average powers as a function of

the azimuth angle ¢ (in degrees) when an antenna array
receives an incident plane wave of 1 V/m (peak) with 6 = /2.
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Figure 7. The average powers P0, Pl, P2, P3, P4,and P5,
delivered by each antenna (in pW), and the mean, Fy,, of the
average powers as a function of the azimuth angle ¢ (in

degrees) for a MIPMOP front-end design providing Hermitian
matching to the antenna array receiving an incident plane
wave of 1 V/m (peak) and for 6 =7/2.
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Figure 9. The average powers PO, P1, P2, and P3, delivered
by each antenna (in pW), and the mean, Py, of the average
powers as a function of the azimuth angle ¢ (in degrees) for a
conventional front-end design receiving an incident plane wave
of 1 V/m (peak) and for 6=7/2.
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We will now examine how this antenna array behaves in the two
configurations considered in Section 3.

4.1 The Case of a
Conventional Front-End Design

In the case where the antenna array sees six uncoupled scalar
loads of 73.0 2, we obtain the directivity pattern shown in Fig-
ure 6. The mean of the average powers is practically independent
of the angle of arrival, and close to 2.4 uW. Consequently, the
antenna array delivers about 14.4 pW irrespective of the azimuth
angle @, whereas in the same field, a single dipole antenna in free
space would deliver 4.4 uW to a 73.0 @ load. Using Equation (3),

we can compute the correlation coefficients, Tis of the antenna

voltages, and get

1.000 0356 -0.250 -0.261 -0.250 0.356
0356 1.000 0356 -0.250 —0.261 -0.250

| -0.250 0356 1.000 0356 -0250 -0.261
(r’f)_ 0261 -0250 0356 1.000 0356 -0.250|
-0.250 —0.261 -0.250 0356 1.000 0.356
0356 0250 -0.261 -0.250 0356 1.000
(16)

The absolute value of four correlation coefficients in each row (or
column) is significantly reduced by antenna loading, but one cor-
relation coefficient in each row (or column) is increased. Conse-
quently, we can say that decorrelation of a received signal by
mutual coupling (proven in [6] between two identical antennas)
does not fully apply between all antenna pairs of an array of three
or more antennas.

4.2 The Case of a
MIPMOP Front-End Design

In the case of a receiver using a MIPMOP front end providing
Hermitian matching between Z,,, and Zg;, Figure 7 shows the

power delivered by each antenna and the average power as a func-
tion of the azimuth, in the configuration used for Figure 6. We note
that the characteristics shown in Figure 3 are very different from
those shown in Figure 6. The average power slightly depends on
the angle of arrival, and is about twice higher than in Figure 6. An
interesting feature is that the sign of the power delivered by each
antenna depends on the direction of arrival: a lot of active power is
exchanged between the antennas. In summing the power delivered
by each antenna, cancellation occurs, and a total power ranging
from 27 uW to 37 uW is delivered to the load. The large exchange
of power suggests that low losses in the antenna and in the
MIPMOP passive linear matching network are important in
obtaining the performance shown in Figure 7.

5. The Interest in a MIPMOP Front-End
Design in a Receiver

Can we take advantage of mutual coupling in a receiver using
multiple antennas? In other words, we wonder whether well-
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designed MIPMOP front ends are better than conventional multi-
port receiver front ends. Here, two issues must be considered: the
directional pattern of each channel at the output of the front end,
and the signal-to-noise ratio. In the case of a conventional front-
end design, the correlation at the output of the front end corre-
sponds to the correlation coefficients of the antenna voltages
shown in Equations (10) and (16). However, in the case of an
MIMOP front-end design, the correlation at the output of the front
end does not correspond to the correlation coefficients of the
antenna voltages shown in Equation (11).

The directional patterns are related to signal correlation. Sev-
eral authors [10-12] have investigated the effect of a passive loss-
less MIPMOP network providing Hermitian matching to its
antenna ports and Hermitian matching to uncoupled scalar loads at
its output (bilateral Hermitian matching). They came to the conclu-
sion that bilateral Hermitian matching can be used for advanced
beam-forming, and that the output voltages always have a correla-
tion of zero for nonzero spacing (in the case of two-dimensional
Rayleigh channels) because the matching network modifies the
directional patterns of the n channels such that they are orthogonal
over the azimuth. In fact, the orthogonality of the patterns of any
lossless decoupled and matched antenna system was previously
proven by Stein [13]. The decorrelation effect is beneficial, but not
necessarily essential, since correlation coefficients lower than 0.6
are usually considered to be sufficiently low for good diversity
action [6, 8].

Hermitian matching to the array of antennas will directly pro-
vide a stronger signal because of maximum power transfer. Such
matching might eventually improve the signal-to-noise ratio of a
MIPMOP front-end, if noise is not degraded by the provision made
for obtaining conjugate matching. For instance, let us consider the
scheme shown in Figure 4. If the MIPMOP passive linear matching
network provides bilateral Hermitian matching, the low-noise
amplifier and the analog-processing and conversion circuits may be
identical to those used in Figure 2, and may operate under the same
conditions. In this case, a degradation of the noise performance
may be only the result of losses inherent to a practical implementa-
tion of the passive MIPMOP network. In this respect, one can
show that a reciprocal, lossless network providing bilateral
Hermitian matching exists. However, this theoretical result says
nothing about a typical circuit diagram that could be used to assess
achievable losses. This question was addressed by Weber et al [14,
15]: the matching network is very complex (it comprises n(2n +1)

circuit elements), and losses must be taken into account to obtain a
realistic design, as hinted at in Section 4.2.

In a single-input-port single-output-port amplifier, the source
impedance Z,,, that results in the minimum noise figure is usually

not the impedance corresponding to conjugate matching with the
input impedance of the amplifier. However, it is possible to design
a low-noise amplifier in which Z,, takes on a prescribed value,

such that the minimum noise figure and conjugate matching are
simultaneously achieved [16, 17]. If such low-noise amplifiers are
used in Figure 4, a MIPMOP passive linear matching network pro-
viding bilateral Hermitian matching will also provide optimized
noise performance. More generally, a MIPMOP-front end can be
designed to provide the best signal-to-noise ratios at its » outputs.
However, we will not address this question here, since it would
require an accurate definition of the quantity to be optimized, and
an involved development.
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6. The Interest in a MIPMOP Front-End
Design in a Transmitter

Can we take advantage of mutual coupling in a transmitter
using multiple antennas? If we consider a passive lossless
MIPMOP network having » antenna ports connected to the antenna
and » input ports connected to the outputs of » uncoupled power
amplifiers, we need to consider the radiation patterns and the
radiation efficiency.

In the case of a transmitter, the radiation pattern for each
channel can be modeled at will, regardless of antenna coupling, by
suitable digital processing prior to the digital-to-analog conversion
preceding power amplification. Such beam forming is more effec-
tive in a transmitter than in a receiver, since noise is not an issue
(in the case of a transmitter, the main limit is the resolution of the
digital-to-analog converters). Completely decorrelated beams may
be obtained in this manner [18].

The radiation efficiency, i.e., the ratio of the radiated power
to the total power flowing out of the power amplifiers, is not gov-
erned by some sort of matching of the power amplifier to the
antennas. For instance, in the case of a transmitter connected to a
single antenna, the impedance of the antenna is not matched to the
output of the power amplifier. The output filter or matching circuit
of the transmitter is merely designed to present to the active
device(s) a load impedance producing optimum performance for
the desired output power and operating class [19, Sec. 4.7; 20,
Chap. VI; 21, Chap. 9]. This is further justified by two additional
facts: power amplifiers are often not linear (depending on the class
of operation), and no power is supposed to flow from the antenna
to the power amplifier in the case of a transmitter connected to a
single antenna,

If we now come back to the case of a transmitter having »
output ports connected to an array of antennas, let us consider the
effect of having the power amplifiers see a non-diagonal imped-
ance matrix: in this case, a current injected by the power amplifier i
produces a voltage at the output of the power amplifier j. This volt-
age will produce losses, distortion, cross-modulation, and
increased device stress in the amplifier j. This voltage might even
produce anomalous operation in a switched-mode power amplifier
(e.g., class E or F). Radiation efficiency will consequently be
improved and the other detrimental phenomena will be avoided if a
passive low-loss MIPMOP circuit, inserted between the antenna
terminals and the power-amplifier outputs, is such that the power
amplifiers see a diagonal impedance matrix. This requirement is far
less stringent than bilateral Hermitian matching, but such networks
are nevertheless likely to be complex and significantly lossy when
n is large.

7. An Active MIPMOP Front End
for a Receiver

In Section 5, we found that a MIPMOP receiver front-end
design could provide better performance than a conventional
design. We also mentioned that a passive matching network, pro-
viding Hermitian matching to the antenna, is very complex, and
losses degrade its performance. Such passive linear matching net-
works are not used in practice, as mentioned by Jakes [22,
Sec. 5.3.1, although efforts are currently being made in this direc-
tion [14, 15].
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Anyhow, the concept of a MIPMOP receiver front end,
defined in Section 3.2, is not restricted to passive implementations.
An active circuit may of course introduce coupling between several
channels. An interesting candidate is the MIMO series-series feed-
back amplifier (MIMO-SSFA) [23, 24], which was initially intro-
duced as an interface circuit for the reduction of crosstalk and echo
in multiconductor interconnections. The possibility of designing a
MIPMOP wireless receiver front end comprising a MIMO-SSFA,
such as the one shown in Figure 8, was explained in [25].

Since the focus of this Magazine is not circuit theory, we
omit the general definition of the MIMO-SSFA and the design pro-
cedure that may be used to obtain the desired characteristics of the
MIPMOP receiver front end. In Figure 8, the low-noise MIPMOP
amplifier is made of » uncoupled input-matching networks (C211
to C214 and 1221 to L224), n uncoupled output matching net-
works (C521 to C524 and L511 to L514), and a MIMO-SSFA. The
feedback network of the MIMO-SSFA only comprises the four
inductors 1411 to L414, coupled by mutual induction. This feed-
back network produces a negative feedback, creating coupling
between the channels.

If mutual induction was not present, Figure 8 would represent
four independent low-noise amplifiers with inductive source
degeneration, capable of providing minimum noise figure and
conjugate matching, simultaneously [16, 17]. Consequently, this
low-noise MIPMOP amplifier requires no added circuit element,
compared to the four independent low-noise amplifiers used in the
conventional design of Figure 2.

8. An Example of a Design Using the
MIMO-SSFA

This section applies to a circular array of four paralle] half-
wave dipole antennas (side-by-side configuration) for 1880 MHz,

QUTPUT
L5t o

!

H

i

! 1t '
1T v 1 Q3

| cc i
"22'% VBias '

I L512 i

= i

1

c212 R312 €522 [
|

H y = Q312 |
!

I

i

I

22 L513
-

R314 C524

I w14 L413

§L4 12 EL‘& il

Figure 8. A low-noise MIPMOP amplifier comprising a
MIMO-SSFA, four independent input-matching networks, and
four independent output-matching networks.
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presenting a 0.4241=27mm spacing between the nearest array
elements. The impedance matrix of the antenna array is computed
as

Zant
73.1 1.1-364; -233-1597 1.1-364j
| 1.1-364j 73.1 1.1-364; -233-15.9;]
-233-159; 1.1-36.4; 73.1 1.1-364;
1.1-36.4; -233-159; 1.1-364; 73.1
an

using the approach described in Section 2.1. For a zenith angle
6 = /2, the open-circuit voltages are again 51 mV for an incident
field of 1 V/m, and the matrix of the correlation coefficients, r; , of

open-circuit voltages is

1.000 -0.127 -0.402 -0.127
-0.127 1.000 -0.127 -0.402
()= . (18)
-0.402 -0.127 1.000 -0.127
-0.127 -0.402 -0.127 1.000

8.1 The Case of a
Conventional Front-End Design

For instance, let us assume that the array sees four uncoupled
scalar loads of 73.0 Q. The directional pattern is shown in Figure 9.
The mean of the average powers oscillates between 3.3 uW and
4.2 uW as a function of the angle of arrival, ¢ . In the same field, a
single dipole antenna in free space would deliver 4.4 yW to a
73.0 @ load.

The correlation coefficients, #;, of antenna voltages are

» y b
1.000 -0.209 -0.215 -0.209
-0.209 1.000 -0.209 -0.215
(n)- m
-0.215 -0.209 1.000 -0.209
-0.209 -0.215 -0.209 1.000

Again, we observe that the absolute value of a non-diagonal ele-
ment of Equation (19) is sometimes higher and sometimes lower
than the absolute value of the corresponding element of Equa-
tion (18).

8.2 The Case of a
MIPMOP Front-End Design

We have designed a MIPMOP amplifier corresponding to the
schematic diagram shown in Figure 8. It was designed in such a
way that when each output port of the amplifier is connected to a
grounded 50 @ resistor, the amplifier provides an impedance Z;;

close to Zy,,, (Hermitian matching at the far end). This is for the

case where the antennas are connected to the input of the amplifier
using four 0.045-m-long transmission lines having propagation
velocities of 0.5¢;, characteristic impedances of 80 €2, and attenua-

tions of 2.0 dB/m, all at 1880 MHz. Our design is based on the
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characteristics of a commercially packaged low-noise pseudomor-
phic HEMT, and incorporates drain resistors shown in Figure 8,
which provide resistive loading to improve stability. The resulting
voltage gain matrix, Gy , of the MIPMOP amplifier and Zg;, are

Gy
_2.80-332] 006+0.86j 024+037j 0.06+0.86)
| 0064086 -2.80-3.32j 0.06+0.86; 024+037;
T 0244037/ 0.06+0.86; -2.80-3.32; 0.06+0.86
0.06+0.86; 024+037j 0.06+0.86; -2.80-332]
(20)
Zg,
74.8+0.19) 1.6+345) -20.4+14.6j 1.6+345j)
| 16+345; 7484019 16+345; -20.4+146/
Tl 2044146 1.6+345; 748+0.19/ 1.6+34.5)
1.6+345] —204+146j 1.6+34.5) 748+0.19;
(1)

Although the design objective, Z;; ~Z,,,, is not equivalent to

Z,.~Zs; (Hermitian matching at the near end) because of
losses in the transmission lines, a comparison of Equations (17)
and (21) shows that Hermitian matching is almost reached between
the antenna array and the near end of the transmission lines. Taking
into account the voltage transfer matrix, T, of the transmission
lines obtained using Equation (43) of Appendix C, we compute the
average powers delivered to each 50 Q resistor and the mean of the
average powers shown in Figure 10. The matrix of the correlation
coefficients, r; , of the antenna voltages may be computed using

<V0V5> =Gy <Vant oVanto > Gr (22)
and
Gr =GyTyZgy (Zsy +Zanr) (23)

where V; is the column vector of the output voltages. We get

1.000 -0.533 0.168 -0.533
-0.533 1.000 -0.533 0.168

(ry)= : (24)
0.168 -0.533 1.000 -0.533
~0.533  0.168 -0.533 1.000

According to Equation (24), the correlation of adjacent channels is
not low, but acceptable. This is related to the fact that as shown in
Figure 10, the main beam of a given channel corresponds to a
strong sidelobe of the adjacent channel. A different design could
correct this. However, this example clearly shows that a MIPMOP
amplifier providing Hermitian matching does not necessarily pro-
vides a reduction of the correlation coefficients. This is quite dif-
ferent from an ideal lossless MIPMOP matching network providing
bilateral Hermitian matching, which produces a perfect decorrela-
tion. Other differences between the MIPMOP amplifier and a pas-
sive MIPMOP matching network are gain versus loss, and the
number of additional circuit elements compared to a conventional
design.
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9. Conclusion

We have discussed some properties of an array of linear
antennas when it is used as a multi-port device, as opposed to the
classical theory of a antenna array used as a single-port device
(which includes antennas having a single driven element, e.g., Yagi
antennas, and arrays comprising multiple driven elements, ¢.g.,
using a beam-forming feed). We have shown that interesting prop-
erties are obtained when the front end of a receiver is a MIPMOP
device, as opposed to multiple independent single-input-port and
single-output-port devices. We have shown that a MIPMOP
receiver front end may be based on an active circuit such as the
MIMO-SSFA, and we provided an example in which this approach
required no additional circuit elements compared to a conventional
design.

The combination of a multi-port antenna and a MIPMOP
front end is an active research area in which future developments
are needed. For instance:

. We need to find out what the best design parame-
ters for the MIPMOP circuits are, and how noise
can be characterized, assessed, and minimized;

. We need more elaborate multi-port circuit-synthe-
sis techniques, capable of providing wanted
parameter values in a given bandwidth;

. We need practical models (e.g., equivalent cir-
cuits) for the impedance matrix of the antenna
array in a given bandwidth for simple antennas,
and for the more-complex antennas used in real
applications (e.g., the PIFA antenna);

. We need to learn how we should specify a system
made of the antenna array, the interconnections,
and the MIPMOP front end for the best perform-
ance of the digital receiver (or transmitter);

. We need to discover how we could optimize the
system made of the antenna array, the intercon-
nections, and the MIPMOP front end, as a whole.

10. Appendix A:
The Impedance Matrix of an
Array of Dipole Antennas

Each dipole is parallel to the unit vector e, , and the electrical

center of dipole number j has a position defined by the radius vec-
tor, r;. At the frequency fo for which the dipoles have a length

close to a half wave, we assume [26, pp. 34-37] that each dipole
presents a self-impedance equal to 73.13 ©2. Although a closed-
form solution [27, eq. 8-73], based on the induced EMF method, is
available for the computation of the mutual impedances of paraliel
dipoles, we found that the implementation of the cosine and sine
integrals in MathCAD is such that accurate results are not obtained
for all configurations. We therefore used a direct computation
based on a closed-form formula for the fields and a numerical inte-
gration [27, eq. 8-68].

We assume that a plane wave of wave vector K, having a lin-
ear polarization along the unit vector u, impinges on the antenna
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array. Of course, we have u<k =0. The open-circuit voltage,
Vant0j » of antenna j is given by [26, p. 305; 28, p. 6-5]

Vanr 0y = Heg jEo exp(——jk-rj), 25)

where E, is the magnitude of the incident electric field at the ori-
gin. The effective height, Hyg ;, 18

b3
c cos(zcose)
Hyp =—l % Zyeey, 26

where ¢ is the free-space light velocity, and ey is the unit vector

of the spherical coordinates corresponding to a partial derivative
with respect to the zenith angle &, that is to say, the angle between
e, and k.

11. Appendix B:
Two-Dimensional
Spatial Correlation Function

For a fixed receiver in a scattering-rich environment, let us
use ['(d) to denote the correlation function between vertical elec-
tric fields E, measured at two points having the same coordinates

z, separated by the distance d. For this computation of a spatial cor-
relation function, we will consider a two-dimensional Rayleigh
channel, and follow the rigorous approach of De Doncker for the
three-dimensional case [29]. The waves impinging the receiver are
assumed to have equal energy (Rayleigh channel), and to propagate
in the horizontal plane containing the antenna’s position. Conse-
quently, we have

2z
E,(r)= [F(8)e /a0, @7
0

where Kk is the horizontal wave vector of a plane wave, & is the
azimuth of k, F(8) is the complex plane-wave spectrum of £,

and r is the horizontal radius vector of the antenna’s position.
Equation (27) corresponds to one realization of E,. A given plane
wave spectrum corresponds to each realization, and under these
assumptions, F(8) is a complex random function. Let us use

F,{(6) to denote the real part of F(6), and F; (8) to denote the
imaginary part of F(6). For any azimuth 8, we have

(F(©) (7, (0)= (7 (0))=0. e

Since two waves arriving from the azimuths & and 6, are
uncorrelated and are supposed to have equal energy, we have

(F(8)F(6,))=(F (8)F:(6,))=C5(6,-6,), (29

where 8 is the Dirac distribution and C is independent of the azi-
muths. Finally, the real and imaginary parts of F(H) are assumed

to be uncorrelated:
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(F.(8)F(8,))=0. (30)

From these assumptions, we have
5 2n 27w (kK
(120 )= [ {7 (@) F@))e /e asae
00

27 2m )

= | [2co(8~8,)e ™ aga0, (1)
00

=47xC.

Since this quantity is assumed to be independent of the position,
we obtain

C= <|E2l2> . (32)

We also have

<F(61)F@>=<IZZ' >a(el—ez).

/4

(33

Consequently, the correlation function between vertical electric
fields E, measured at r; and r, is

2x2x

(E.(n)E.(2))= [ [(F(6)F(&))dd0,
00
22 lEz!Z i
= ({ 6[< — >5(91_02)e ](kll k, 2)d01d92
2
= <|Iizﬂl- >2]’t e—fk("x—rz)dg . (34)

0

We have k=cosfe, +sinfe,. We can choose e, such that

r, —r; = de, without loss of generality. We get

<|Ez|2>27r .
l—-(d):_____ j’e—jkdcosode

2z 0
(35)

(=:f)

= jcos (kd cos6)d6.
T
0
Using Equation (9.1.18) of [30], we finally get

r(d)=(|E. Yo (k). 36)

where J is the Bessel function of the first kind of order 0. This is

the result used in Jakes without proof [22, p. 329]. This result is
compatible with experimental data [31, Sec.IV.C]. This result
seems to have been first established by Clarke [32].
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12. Appendix C.
Transmission Lines Connected
to the Antennas

We assume that each of the » antennas is connected to a two-
conductor interconnection (for instance, a coaxial cable) behaving
as a two-conductor transmission line, and that the interaction
between these interconnections may be neglected. Let j be an inte-
ger greater than or equal to one, and less than or equal to n.
Antenna number j is connected to the near-end lossless intercon-
nection number j of length d;, characteristic impedance z¢;, phase
velocity ¢;, and attenuation constant « ;. The far end of intercon-

nection number ; is connected to the input port number j of a mul-
tiple-input-port and multiple-output-port (MIPMOP) amplifier
comprising # input ports.

Let us define the characteristic impedance matrix, Z., of the
interconnections as

ZC =diag,, (ZCD---’ZCn)’ (37)
where diag,, (x;,...,, ) denotes the diagonal matrix of size nxn of

the components xi,...,x,. Let us also define the transmission
matrix, T, of the interconnections as

_[aﬁ jzz_fo]dl {aﬁ ,-2_”&},"
T =diag,| e ade €

n

(38)

We define i, ; as the current flowing into the near end of the
positive conductor of interconnection number j; i; ; as the current
flowing into the positive terminal of port j of the MIPMOP ampli-
fier; vgy; as the voltage between the near end of the positive and
the negative conductors of interconnection number j; and v;; as

the voltage between the positive and the negative terminals of port
j of the MIPMOP amplifier. We also define I, as the column

vector of the CUTTents iy, ,..»ige,s Iy as the column vector of the
currents iyq,...iy,; Vgn as the column vector of the voltages

V

s and V; as the column vector of the voltages

Vant1s+»

V“,...,V[n .

As shown in Figure 1, let us use Z;; to denote the imped-
ance matrix looking into the MIPMOP amplifier, Zg;; to denote

the impedance matrix looking into the near end of the two-con-
ductor interconnections, and Zg,,, to denote the impedance matrix

looking into the far-end of the two-conductor interconnections. We
have

Von: = EHejf “Zgnlans = LspLone » (39)
with
.
Zg= {ln +T(Zy -Zc ) (Zy +Zc) T}

-1
{ln ~T(Zy -Zc W (2o +Zc )_] T} Zc, (40)
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which can also be written as

T+T! T-T!
ZSLI={ 2 Z;- 2 ZC}

T+T! T-T!

-1
2 > Zu} Z-. 41)

Consequently, V,,, and I, are given by

-1
Vant =Zs11 (Zam +Zsyy) EH g

-1 (42)
Lo = (Zant + ZSLI) EHeﬁ"
Using Equation (41), we easily obtain
7', 1-1'_ |
V,=Z Z-- VA
1=4£yy 2 c 2 LI
-1
Ze(Zow+Zg,) EMyp,
(43)

-1
T+T! T-T!
11={ > Z;- 2 Zu}

ZC (Zam +ZSL[ )_l EHeﬁ' .

Of course, the impedance matrix, Zg,,, , looking into the far end
of the two-conductor interconnections is given by

Loy = {ln + T(Zant - ZC)(Zant +Zc )_1 T}
-l
{ln _T(Zant ‘ZC)(Zam + ZC) 1 T} Zo, (44)

which can also be written as

~1 —1
T+T T-T
YA - ={ 2 Zos — 2 ZC}

-1
T+T T-T"!
In the special case where the impedance matrix, Z;;, looking into

the MIPMOP amplifier is diagonal, the input ports of this
MIPMOP amplifier look like the input of #n uncoupled amplifiers.
In this case, all matrices in Equations (40) and (41) commute. Of
course, matching is obtained for Z;; = Z.

13. References
1. M. D. Migliore, “An Intuitive Electromagnetic Approach to
MIMO Communication Systems,” IEEE Antennas and Propaga-
tion Magazine, 48, 3, June 2006, pp. 128-137.
2. ]. D. Kraus, Antennas, New York, McGraw-Hill, 1950.

3.R. S. Adve and T. K. Sarkar, “Compensation for the Effects of
Mutual Coupling on Direct Data Domain Adaptive Algorithms,”

IEEE Antennas and Propagation Magazine, Vol. 49, No. 4, August 2007

IEEE Transactions on Antennas and Propagation, AP-48, 1,
January 2000, pp. 86-94.

4. C. A. Desoer, “The Maximum Power Transfer Theorem for n-
Ports,” IEEE Trans. Circuit Theory, 20, 3, May 1973, pp. 328-330.

5. M. Vidyasagar, “Maximum Power Transfer in » Ports with Pas-
sive Loads,” IEEE Trans. Circuit Theory, 21, 3, May 1974, pp.
327-330.

6. R. Vaughan and N. Scott, “Closely Spaced Terminated Mono-
poles for Vehicular Diversity Antennas,” 1992 IEEE International
Symposium on Antennas and Propagation Digest, 2, July 18-25,
1992, pp. 1093-1096.

7. G. L. Stiiber et al, “Broadband MIMO-OFDM Wireless Com-
munications,” Proceedings of the IEEE, 92, 2, February 2004, pp.
271-294,

8. J. Mietzner and P. A. Hoeher, “Boosting the Performance of
Wireless Communication Systems: Theory and Practice of Multi-
ple-Antenna Techniques,” IEEE Commun. Mag., 42, 10, October
2004, pp. 40-47.

9. M. A. Jensen and J. W. Wallace, “A Review of Antennas and
Propagation for MIMO Wireless Communications,” JEEE Trans-
actions on Antennas and Propagation, AP-52, 11, November
2004, pp. 2810-2824.

10. R. A. Speciale, “Advanced Design of Phased-Array Beam-
Forming Networks,” I[EEE Transactions on Antennas and Propa-
gation, AP-38, 4, August 1996, pp. 22-34.

11.J. W. Wallace and M. A. Jensen, “Termination-Dependent
Diversity Performance of Coupled Antennas: Network Theory
Analysis,” [EEE Transactions on Antennas and Propagation, AP-
52, 1, January 2004, pp. 98-105.

12.J. W. Wallace and M. A. Jensen, “Mutual Coupling in MIMO
Wireless Systems: A Rigorous Network Theory Analysis,” IEEE
Trans. Wireless Commun., 3, 4, July 2004, pp. 1317-1325.

13. 8. Stein, “On Cross Coupling in Multiple-Beam Antennas,”
IRE Transactions on Antennas and Propagation, AP-10, 5, Sep-
tember 1962, pp. 548-557.

14. J. Weber, C. Volmer, K. Blay, R. Stephan, M. A. Hein,
“Miniaturisation of Antenna Arrays for Mobile Communications,”
Proc. 35th European Microwave Conf., Paris, France, October
2005, pp. 1173-1176.

15. J. Weber, C. Volmer, K. Blau, R. Stephan, M. A. Hein,
“Miniaturized Antenna Arrays Using Decoupling Networks with
Realistic Elements,” IEEE Trans. Microwave Theory Tech., MTT-
54, 6, June 2006, pp. 2733-2740.

16. J. Engberg, “Simuitaneous Input Power Match and Noise
Optimization Using Feedback,” Dig. Tech. Pap. Fourth European
Microwave Conference, Montreux, September 1974, pp. 385-389.

17. R. E. Lehmann and D. D. Heston, “X-Band Monolithic Series
Feedback LNA,” IEEE Trans. Microwave Theory Tech., MTT-33,
12, December 1985, pp. 1560-1566.

219



18. K. Boyle, “Radiation Patterns and Correlation of Closely
Spaced Linear Antennas,” IEEE Transactions on Antennas and
Propagartion, AP-50, 8, August 2002, pp. 1162-1165.

19. G. Gonzalez, Microwave Transistor Amplifiers — Analysis and
Design, Second Edition, Upper Saddle River, NJ, Prentice Hall,
1997.

20. A. Pacaud, Electronique radiofréquence, Paris, Ellipses, 2000.

21. 1. Hickman, Practical Radio-Frequency Handbook, Third Edi-
tion, Oxford, Newnes, 2002,

22. W. C. Jakes, Microwave Mobile Communications, New York,
Wiley-Interscience, 1994,

23. F. Broydé and E. Clavelier, “A Simple Method for Transmis-
sion with Reduced Crosstalk and Echo,” Proc. of the 13th IEEE
Int. Conf. on Electronics, Circuits and Systems, ICECS 2006,
December 10-13, 2006, Nice, France, pp. 684-687.

24.F. Broydé and E. Clavelier, “MIMO Series-Series Feedback
Amplifiers,” to appear in JEEE Transactions on Circuits and Sys-
tems II.

25. F. Broydé and E. Clavelier, “Multiple-Input-Port and Multiple-
Output-Port Amplifier for Wireless Receivers,” Proc. of the SAME

220

2007 Forum, Sophia-Antipolis, France, October 3-4, 2007; avail-
able at http://www.eurexcem.com.

26. R. E. Collin, Antennas and Radiowave Propagation, Interna-
tional Edition, New York, McGraw-Hill, 1985.

27. C. A. Balanis, Antenna Theory, Analysis and Design, Second
Edition, New York, John Wiley & Sons, Inc., 1997.

28.Y. T. Lo and S.W. Lee, Antenna Handbook, Volume II,
Antenna Theory, New York, Van Nostrand Reinhold, 1993.

29. Ph. De Doncker, “Spatial Correlation Functions for Fields in
Three-Dimensional Rayleigh Channels,” Progress in Electromag-

‘netic Research, PIER 40, 2003, pp. 55-69.

30. M. Abramowitz and L. A. Stegun, Handbook of Mathematical
Functions, New York, Dover, 1965.

31.J. W. Wallace, M. A. Jensen, A. L. Swindlehurst, and B. D.
Jeffs, “Experimental Characterization of the MIMO Wireless
Channel: Data Acquisition and Analysis,” IEEE Trans. Wireless
Commun., 2, 2, March 2003, pp. 335-343.

32.R. H. Clarke, “A Statistical Theory of Mobile-Radio Recep-
tion,” Bell Syst. Tech. Journal, July-August 1968, pp. 957-1000. &)

IEEE Antennas and Propagation Magazine, Vol. 49, No. 4, August 2007



	Title page
	Title and Abstract
	1. Introduction
	2. Review of concepts Applicable to Arrays of Antennas
	2.1 The Impedance Matrix of an Array of Antennas
	2.2 Hermitian Matching and Maximum Power Transfer
	2.3 Correlation Coefficients of the Voltages
	2.4 A Set of Two-Conductor Interconnections

	3. An Example of a Linear Array of Three Loosely Coupled Dipole Antennas
	3.1 The case of a Conventional Front-End Design
	3.2 The case of a MIPMOP Front-End Design
	3.3 Effect of Interconnections

	4. An example of a Circular Array of Six Tightly Coupled Dipole Antennas
	4.1 The Case of a Conventional Front-End Design
	4.2 The Case of a MIPMOP Front-End Design

	5. The Interest in a MIPMOP Front-End Design in a Receiver
	6. The Interest in a MIPMOP Front-End Design in a Transmitter
	7. An Active MIPMOP Front End for a Receiver
	8. An Exemple of a Design Using the MIMO-SSFA
	8.1 The Case of a Conventional Front-End Design
	8.2 The Case of a MIPMOP Front-End Design

	9. Conclusion
	10. Appendix A: The Impedance Matrix of an Array of Dipole Antennas
	11. Appendix B: Two-Dimensional Spatial Correlation Functions
	12. Appendic C: Transmission Lines Connected to the Antennas
	13. References

