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Comparison of Coupling Mechanisms
on Multiconductor Cables

Frédéric Broydé, Member, IEEE, and Evelyne Clavelier, Member, IEEE

Abstract— Five possible types of coupling on multiconductor
cables are identified. The three new types of coupling have their
respective magnitudes assessed, for different simple cables. We
then give a complete example of field-to-cable coupling calcu-
lation with the five types of coupling included. An experiment
reproducing the setup considered in this calculation was carried
out and shows that one of the coupling described by the parallel
transfer impedance (coupling type 3) is present and dominates
the cable response in certain cases.

1. INTRODUCTION

OLLOWING early work by Schelkunoff in the 1930’s, the

effort concerning the modeling and measurement of the
shielding characteristics of coaxial cables has been tremendous
in the past 25 years. It is now well established that, up to
3 GHz, a coaxial cable is best characterized by a transfer
impedance and a through elastance [1]. Above that frequency
limit, these two quantities may still be relevant, but are more
difficult to measure, and shielding effectiveness is still used
for the characterization of coaxial cables. As we will use
transfer impedance and through elastance, one may consider
that our paper is restricted to frequencies below 3 GHz, but
some considerations which we will develop are not frequency-
dependant.

Throughout this paper, we will only study shielded mul-
ticonductor cables with one or more internal wires and one
overall shield. The paper is also limited to cables of circular
(or approximately circular) cross section. Our ideas could of
course easily be extended to more complex cables. Several
authors have already developed concepts and measurement
techniques for shielded multiconductor cables. In some cases,
the concepts of common-mode and differential-mode transfer
impedance have been introduced and those quantities directly
measured [2]. However, those quantities could theoretically
be deduced from the knowledge of the complex transfer
impedance for each wire contained in the shield. Though
the direct measurements of common-mode and differential-
mode transfer impedance have a practical interest, they do
not describe other coupling phenomena than those used for
coaxial cables.

The purpose of this paper is to show that other coupling
mechanisms indeed exist in multiconductor shielded cables, to
suggest measurement techniques, and to evaluate them.
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Type 1 coupling on a coaxial cable.

Fig. 1.

Throughout the paper something “having a cylindrical sym-
metry” means that it is invariant by any orthogonal transforma-
tion that leaves a cylinder of circular cross section invariant.
Let us recall that these include translation along the axis,
rotation around the axis, symmetry with respect to any plane
that contains the axis, or orthogonal to the axis. At any given
point, the words axial, radial, and orthoradial, respectively,
mean “parallel to the cable axis,” “orthogonal to the axis and
along a straight line crossing the axis,” and “orthogonal to any
axial vector and to any radial vector.”

II. CABLES WITH CYLINDRICAL SYMMETRY

Let us consider a cable with a single shield, characterized by
a perfect cylindrical symetry, but having possibly all and any
limitations normally found on real cables: diffusion coupling,
aperture coupling, porpoising coupling, etc. First of all, this
cable can only be a coaxial cable. What could we say of the
shielding properties of this coaxial cable, if we knew nothing
of the existing theory?

To begin with, we could find that the possible causes of
coupling through the shield would be electric field (possibly
caused by charges far away from the cable), magnetic field
(possibly caused by currents far away from the cable), currents
on the cable, and charges on the cable. We would then try
different field configurations and find out that because of the
cylindrical symmetry of the coaxial cable, there is only four
situations of interest, respectively, one for the electric field, one
for the magnetic field, one for charges, and one for currents.
Applying basic electromagnetic laws would then force us to
merge those four situations into two types of coupling.

Fig. 1 shows what we call type 1 coupling on a coaxial
cable: a common-mode current flows on the screen and an
orthoradial magnetic field surrounds the cable. As we know,
the cable is completely characterized for this coupling by its
(linear) transfer impedance Zr (in ohms per meter) which
relates the inner voltage per unit length to the common-mode
current.
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Fig. 2. Type 2 coupling on a coaxial cable.

Fig. 2 shows what we call type 2 coupling on a coaxial
cable: charges appear on the surface of the cable and a radial
electric field surrounds the cable. As we know, the behavior
of the cable for this coupling may be characterized by a
through elastance or a transfer admittance. As the latter is
not a characteristic of the cable only, one usually voids its use
for cable characterization. Let us recall [1] that in a triaxial
measurement setup, the transfer admittance Yr is related to
the through elastance K1 by

N ijl C2

where C is the per-unit-length capacitance of the outer circuit
and C; is the per-unit-length capacitance between the two
conductors of the coaxial cable. The through elastance is
a characteristic of the cable only, and Y7 is dependant on
the measurement setup because C; will differ from one test-
installation to the other, if their transverse dimensions are
different. However, we prefer to introduce a new quantity
(r called the radial electric coupling coefficient. The radial
electric coupling coefficient is dimensionless, and defined as

B ijl'

Kr 6]

¢r
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It has the advantage of being a quantity depending on the cable
only, and also to have a clear physical significance: it may be
interpreted as the ratio of the per-unit-length current injected
into the inner conductor on the per-unit-length displacement
current impinging on the shield.

Let us note that pure type 1 and pure type 2 coupling are
only possible on a length of cable short compared with wave-
length, because current may not propagate without charges
accumulating somewhere, and because charges need to be
brought from somewhere by a current. This does not contradict
the independance of the two coupling types.

III. CABLE WITH GOOD SHIELD
HAVING CYLINDRICAL SYMMETRY

Let us follow the same approach as previously for a mul-
ticonductor shielded cable, which may contain any strictly
positive integer number n of internal wires (coaxial cables
are included), with the two following assumptions:

« the shield has a perfect cylindrical symmetry,

« the shield is good: by this we mean that it offers enough
screening for the weak coupling approximation to be valid.

+ + + + + + + +
B
Fig. 4. Type 2 coupling on a shielded multiconductor cable.

Under the weak coupling approximation, a stimulus on one
side (side 1) of the shield may have effects on current and
charges on the other side (side 2) of the screen, but these
effects have negligible consequences on charges and current
on the side (side 1) where the stimulus takes place. Therefore,
even though the cable as a whole does not have the cylindrical
symmetry, in the case of a external excitation the current on
the screen establish themselves as if the cylindrical symmetry
was present.

With these two hypotheses, we now find five different types
of coupling. These couplings will be explained with figures
which represent a shielded pair, having three obvious planes
of symmetry. This representation was used for the clarity of
our drawings, but the cable considered may have any number
of internal wires, and no symmetry is assumed, though it may
eventually be present.

Fig. 3 illustrates type 1 coupling. It is similar to the type 1
coupling for shielded cables. The characteristics of the cable
for this coupling may be expressed for this coupling with n
complex transfer impedances (one for each internal wire), as
said in the introduction. We wrote explicitly that we consider
the complex quantity, because we want to outline that the
phase relationship between the voltage induced on the different
conductors is extremely important. For instance, in the case
n = 2, two voltages in phase are in common mode, and
two signals with opposite phase are in differential mode: their
possible effects on a susceptible device are different as well
as the applicable mitigation practices.

Fig. 4 illustrates type 2 coupling. It is also similar to
type 2 coupling for shielded cables. The cable could be
characterized for this type of coupling with n complex transfer
admittances, but these transfer admittances are not a property
of the cable only, as in the case of the coaxial cable. The
simplest solution to characterize the cable for type 2 coupling
is to use n complex radial electric coupling coefficients, which
are obviously a property of the cable only.
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Fig. 5. Type 3 coupling on a shielded multiconductor cable.
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Fig. 6. Type 4 coupling on a shielded multiconductor cable.

Fig. 5 illustrates type 3 coupling. Here the current is
orthoradial, and the magnetic field is axial. This is typically
what would have been observed if the cable were placed on
the axis of a coil. Coupling with the internal wires will not
occur if those cables are straight. However, a voltage will
clearly be induced on skewed wires, an example of which is
the twisted pair. It does not seem natural to relate the induced
voltage to the current. We prefer to introduce a quantity that
would relate the voltage per unit length on a given wire to
the axial magnetic field H (in amperes per meter). We shall
call this quantity the axial transfer impedance (in ohms), and
we need n axial transfer impedances to characterize the cable
with respect to type 3 coupling.

Fig. 6 illustrates type 4 coupling. A parallel electric field
orthogonal to the axis is present. Its orientation is such around
the cable that it produces no net charge per unit length of cable.
This is what would happen if the cable is introduced at the
center of two parallel plates excited by a symmetrical voltage
source. As an example, if one considers the configuration
shown on Fig. 6 and if we assume a perfect symmetry with
charge reversal, with respect to the plane between the two
internal wires, a pure differential mode current is induced on
the two wires (we also assume symmetrical terminations at
both ends); this is totally different from type 2 coupling which,
with the same assumptions, would bring a pure common mode
current on the two wires. It sounds logical to describe this
coupling with a quantity that relates the per-unit-length current
received on a wire to the per-unit-length displacement current
that flows into the cable on one side and leaves it on the other.
We call this quantity the parallel electric coupling coefficient.
As usual we need n such complex quantities to characterize the
cable with respect to type 4 coupling, but it must be outlined
that these are a priori dependant on the orientation of the
electric field.

Fig. 7 illustrates type 5 coupling. A magnetic field passes
through the cable, penetrates the shield and directly induces
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Type 5 coupling on a shielded multiconductor cable.
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Fig. 7.

voltages between the cable’s conductors. Unlike the other
types of coupling until now, this coupling places the magnetic
field in a “forbidden” orientation: the laws of electromagnetics
say that magnetic fields must run parallel to good conductors.
In fact this should not disturb us to much because we are
obviously dealing with imperfect shields, made of imperfect
conductors. This type of coupling could be produced if we
install the cable inside an Helmholtz coil, orthogonal to its
axis. We propose to describe this phenomenon with a quantity
defined for each inner wire as the ratio between the per-unit-
length voltage induced with respect to cable shield, to the
amplitude of the impinging magnetic field (in amperes per
meter). We call this quantity the parallel transfer impedance
of the cable (in ohms). As previously, we need n complex
parallel transfer impedances, which are a priori dependant on
the orientation of the magnetic field.
Let us conclude this section with three remarks.

1) From the above definitions it is clear that for a coax-
ial cable as defined in Section II, the axial transfer
impedance, the parallel electric coupling coefficient and
the parallel transfer impedance all vanish. This would
not necessarily be true for an imperfect coaxial cable.

2) As was said for cable with cylindrical symmetry, for any
integer x between 1 and 5, pure type z coupling is only
possible for an electrically short length of cable.

3) We introduced five types of coupling, but we could
have introduced more of them! In fact the action of a
general electromagnetic field on a cable can be expanded
in an infinite series of terms having increasingly more
complex symmetry. Appendix I gives an example of
such a series (for electric-field excitation), and shows
that the first two terms are associated with coupling types
2 and 4. We limited ourselves with five types of coupling
because we believed that these types could account for
most situations of interest.

IV. REAL CABLES OF CIRCULAR CROSS SECTION

This section deals with the definition of the coupling types
for a cable of circular or almost circular cross section, without
assumption of cylindrical symmetry. Obviously, for such a
cable, we can nevertheless keep the idea of defining five
coupling modes, provided we define them according to the
symmetry of the incident field, as it appears in the definition
given previously. i

Let us, for instance, consider a simple coaxial cable with a
tape-wound screen. The shield does not have the cylindrical
symmetry, though it is of circular or almost circular cross
section. This type of cable does not belong to the categories of
cable discussed in the Sections II and III above. For instance,
if such a cable is excited by an orthoradial magnetic field, we
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will call this a type 1 coupling, but the current on the screen
will usually (especially at low frequencies, see [4]) flow in
an helicoidal path, instead of flowing along the cable axis.
Also, the total magnetic field along the cable will no longer
be orthoradial, because of the field produced by the skewed
currents on the screen.

We must, therefore, be very careful that (because we define
the types of coupling according to the symmetries of the inci-
dent field) the properties of the charge and current distributions
mentioned in Section III are not necessarily present. This will
be shown experimentally in Section VIIL

Up to now, the paper has been mainly based on consid-
erations of symmetry. The purpose was to identify different
possible types of coupling. The problem of the mechanisms
of a possible coupling has not yet been addressed. This will
be the subject of the next sections.

V. EVALUATION OF COUPLING MAGNITUDES

Our purpose in this section is to calculate the new coupling
parameters in the most simple cases, in order to justify and
illustrate the five types of coupling concept. Coupling types 1
and 2 being well understood, we will review in some detail
types 3, 4, and 5 coupling. Everything in this section is limited
to frequencies when the cable radius is much smaller than the
wavelength.

For type 3 coupling, we can easily compute the axial transfer
impedance in the case of an homogeneous cylindrical shield
of circular cross section, of radius rg and thickness d. Kaden
(see [3, p. 78, eq. (21)]) already did most of the work when
he found that in this field configuration the internal field is
uniform, and computed the shielding factor as

1

= : : 3
cosh (1+2d) + LK sinh (*42d) @
where
K=toltd @)
[T

6 being the skin depth at the given frequency. Obviously, the
axial transfer impedance vanishes for straight wires. Let us,
therefore, consider that the cable contains twisted wires, the
wire i being wound at m; turns per meter, on an helix of radius
r;. If left unconnected, the wires inside the shield (these wires
are supposed to be of a nonmagnetic material) do not disturb
the magnetic field; if one or more wires are connected, their
interaction with the magnetic field may be taken care of by
the proper use of the inductance matrix. The axial-transfer
impedance Za; for wire ¢ is therefore given by
jwuomﬂrrz

; i —, 5
cosh (1+2d) + 1K sinh (Hd) )

ZaTi =

By analogy with the theory of transfer impedance (type 1
coupling), these formulas describe the diffusion coupling. Of
course, of more practical interest would be the case of ‘aperture
coupling (or of other phenomena), but we did not try to
compute it. It should be noted that the authors initially believed
that for a shielded twisted pair, m took two values of opposite

signs. This is not correct, and the values are instead almost
equal, giving predominantly rise to common-mode coupling.

Let us now have a look at type 4 coupling. From electric-
field shielding theory we know that for a homogeneous shield,
the parallel electric coupling coefficient will be zero or ex-
tremely small (the same is true for the radial electric coupling
coefficient). The cable shields that suffer from a significant
type 2 or type 4 couplings need to have apertures, they do
not have the cylindrical symmetry, and the cables fall into the
category discussed in Section IV. Let us therefore consider a
two-wire cable with apertures in its shield, having equal radial
electric coupling coefficients (g1 and (g2 for wires 1 and 2.
In the very special case for which we assume that the shield
has perfect cylindrical symmetry, we can assess an order of
magnitude for the parallel electric coupling coefficients (p1
and (ps for wires 1 and 2. To achieve this, we will consider
a shielded pair containing two straight wires. The external
problem is easy to solve, and one finds that the surface charge
density on the outer surface of the shield is

ps = 2e,E cosf 6)

where E is the intensity of the incident electric field, and 6
is the angle of cylindrical coordinates. The internal problem
is much more difficult. For the worst orientation, one may
assume that all positive (respectively, negative) charges have
field lines that fall on wire 1 (respectively, wire 2). In that
case, it sounds reasonable to assume that

)

¢p1 =~ (R1

¢p2 ® (R2 ®)

gives at least an adequate order of magnitude for the parallel
electric coupling coefficients. It seems to us that a more serious
theoretical investigation of this coupling requires numerical
solution of the field internal to the shield. Also let us recall that
Vance [4] gives estimate of the through elastance for single-
braid shields. The value he finds for cables like RG58 is about
3% 107 m/F. This is equivalent to a radial electric coupling
coefficient (g of about 3x 1073, For a cable having an RG58-
like shield containing two wires, a reasonable estimate of the
radial electric coupling coefficient for one wire would be the
half of this value. Finally, let us observe that twisting internal
wires is a mean of reducing the parallel electric coupling
coefficient.

Let us now consider type 5 coupling. In this case we need
to evaluate, for each wire, the voltage induced in the wire-
shield loop. The computation is generally not easy, and we
will only consider the case of a cable having two wires, and
three orthogonal planes of symmetry. In this case, one only
needs to compute the voltage induced in the wire 1-wire 2
loop. For a homogeneous cylindrical shield of circular cross
section, Kaden (see [3, p. 80, eq. (33)]) again found that in
this field configuration, the internal field is homogeneous, the
shielding factor being given by

1

@5 = cosh (%id) + %(K —+ %) sinh (l%d)

)
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where the previous definition of d,6, and K are still valid.
Assuming a distance A between the two wires, the parallel
transfer impedance Zpt, for wire 1 and the parallel transfer
impedance Zpry for wire 2 are given by

1, A
Zpr1 = ___3JWh . 10
PTLS Coh (B0 1 L (K + L) sinh (Bg)
_%jwl‘oA
ZpTt2 = an

cosh (%ld) + %(K + %) sinh (l}id) ’

As for the axial transfer impedance (11) and (12) only account
for diffusion coupling, and more work is needed to assess
aperture coupling or other mechanisms.

VI. COMPARISON OF COUPLING MAGNITUDES

Let us consider a cable having a good shield with cylindrical
symmetry. The results of (5), (10), and (11) may easily be
compared with the traditional Schelkunoff [4] formula for
diffusion coupling. If Ry, is the dc per-unit-length resistance
of the cable shield, for any internal conductor we have

]in%J Zr = Ryc 12)
whereas for type 3 coupling and type 5 coupling we have

limOZAT =0 (13)

lim Zpt = 0. (14)
w—0

For frequencies high enough for the skin depth é to be much
smaller than the shield thickness, one can easily show that

Zar

~ 4rimr? 15)
T
and
Zpt
— =~ 27A.
7 T (16)

Let us stress that these formulas only account for diffusion
coupling, and that they are based on the internal wire geometry
and other assumptions for which (5), (10), and (11) have,
respectively, been derived.

VII. CALCULATION OF FIELD-TO-CABLE COUPLING

In this paragraph we give two examples of field-to-cable
coupling problems, with a complete expression of the voltage
on an internal wire. The calculations are valid for any cable
of circular or almost circular cross section, but assume a
length of cable electrically short. We have also neglected
crosstalk between internal wires, the influence of which would
be negligible with our assumptions.

We will first consider the case of a cable the shield of which
is in contact with a metallic plane. A plane wave propagates
along the cable. This situation is typically what would be
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Fig. 8. The longitudinal installation of a CUT (cable under test) inside
a TEM cell.
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Fig. 9. The transverse installation of a CUT (cable under test) in a TEM cell.

obtained if a cable is installed in a rectangular TEM cell, as
shown on Fig. 8.

Appendix I shows how the effect of the electric field can
be taken care of for a short length of cable. If we now assume
that (r and {p have a constant value along the length of cable
illuminated by the field, we can say that the electric field causes
on a wire ¢ an injection of current equal to

1
I, z/ 2jwrogo E{{pi — n(pi}dz
0

= 2jwroe, El{({pi — m(r:} (n

Appendix II gives the value of the current along the cable
shield. If the length of cable is terminated by an impedance
Z, at both ends, and if 7, is the free-space wave impedance,
the voltage v; obtained at one termination is given by

v; E
T + %{Zpﬁ +2nroZTi }
jwe, B
+ 222 (Cpi — wCRi} (18)

Z,

where the + sign applies to near-end coupling and the —
sign to far-end coupling. For deriving the second term in
(18), we have used the total longitudinal current flowing on
the cable, and multiplied jt by Zr, even though the current
and the magnetic field do not have the symmetry of type 1
coupling. This is justified by the fact that experience like the
one carried out in wire-injection [5] measurement, proves that
in many cases there is little difference between a measurement
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TABLE I
EXPERIMENTAL RESULTS FOR THE FIRST CABLE

Frequency Measured v; /! for Measured v; /1 for
E=1V/m E=1V/m
Setup of Fig. 8 Setup of Fig. 9
1 MHz —12.8 dB (V) —26.5 dB (uV)
10 MHz — 0.6 dB (V) —10.5 dB (#V)

with, and a measurement without a radially inhomogenous
longitudinal current.

Let us now consider the case of a cable the shield of which is
in contact with a metallic plane, but installed for the broadside
incidence of a plane wave propagating along the plane. Once
again, this situation may be obtained in a rectangular TEM
cell, as shown on Fig. 9. The value v; of the voltage at both
terminations is now given by
% ~ :|:2£770ZAT¢' + %E—TO{CM — nCRi}
where the sign of the first term depends on the termination
considered and the convention for the sign of the parameter
m;.

This last expression is of great interest because type 3
coupling is the only term that is independant of the electric
field on the cable.

19)

VIII. EXPERIMENTAL RESULTS

The experiments suggested in the previous section (i.e.,
according to Figs. 8 and 9) have been carried out in the
SIEM1 simulator at ETCA, Arcueil, France. The height of
the sceptum is 1 m, and the cell width is 2.25 m. For all
our measurements, the field strength ranged between 100 and
160 V/m. We checked for all measurements that noise and
unwanted coupling were below 30 dB of the measured value.
The cable tested were terminated by a 50 ) resistor at one
end, and by the 50  input of our Sonoma Instrument 310
preamplifier at the other end. When the setup of Fig. 8 was
used, we measured the far-end coupling.

For the measurements presented in this paper, we wanted to
be absolutely certain that no unexpected coupling would occur:
we therefore choose not to use a network analyzer or a tracking
generator. We made measurements at few discrete frequencies.
We show our results at 1 MHz and 10 MHz, frequencies at
which the fields inside this TEM cell are “very clean.” For both
geometries, the cable was centered with respect to the cell’s
vertical plane of symmetry, in order to counteract imperfection
in the field distribution.

The first cable tested had 19 internal wires twisted at 1 turn
every 9 cm, a single tinplated cupper braid, and the external
diameter of the braid was about 8.5 mm. We chose a wire that
was near the braig. The length of cable exposed to the field
was 0.5 m. Our results for this cable are shown in Table I,
normalized for 1 m of cable and 1 V/m.

It is interesting to notice that the measured value in the
transverse position (i.e., according to Fig. 9) is only about 10
dB lower than for the cable in the longitudinal position (i.e.,
according to Fig. 8). We then wondered if the signal obtained
in the transverse position resulted more from magnetic or

electric coupling. We therefore installed a plate 70 cm long
and 15 cm wide at a height of 6.5 cm above the 50 cm long
part of the cable exposed to the field. We then made the same
measurement 1) with the plate floating, and 2) with the plate
grounded with a 2.5 cm wide strap. In both cases, the reading
did not change by more than 1.5 dB (within our estimated
measurement errors). However, measurements made with a
D-dot sensor proved that our electric screen 1) did not affect
the electric field seen by the cable of more than 1 dB when
left floating, and 2) did reduce the electric field of 41 dB at 1
MHz and 35 dB at 10 MHz when grounded.

We therefore proved the existence of type 3 coupling with
this simple experiment. Assuming that (19) is applicable, the
measured value for the axial transfer impedance Zar are:
—89.0 dB () at 1 MHz and —73 dB (2) at 10 MHz.

We also tested the same piece of cable in a conventional
triaxial test fixture and we measured the transfer impedance.
We obtained —41.8 dB (€/m) at 1 MHz and —31.4 dB (§/m)
at 10 MHz. If we apply (18) to the values in Table I, and
neglect Zpr and the electric field coupling terms, we find
—43.8 dB (§¥/m) at 1 MHz and —31.6 dB (£/m) at 10 MHz.
The differences between both sets of values is within 2 dB
and is too low to be very significant. It may contain various
measurement inaccuracies, nonperfect radial symmetries of the
cable assumed in (18), or a significant contribution of ZpT.

The second cable tested was a type KXI5, similar to
RG58C/U. Our requirement of having a signal 30 dB above
noise and unwanted coupling was far from being met at 10
MHz, and the result will therefore not be given. At 1 MHz, we
measured Zar = —93.2 dB (). This high value was totally
unexpected, and we checked as previously that our reading
was not due to electric field. This proves that a braided shield
coaxial cable should not a priori be considered as having a
cylindrical symmetry (if it had this symmetry, type 3 coupling
would not be present).

It is important to add that for all our measurements, the cable
was in galvanic contact with the ground plane. However, we
also made measurements with the cables a few millimeters
above the ground plane surface (but the shield was always
grounded at both ends), without any noticeable change in the
measured voltages. In fact, the measurements were not really
affected by small cable moves. For instance, this precludes that
any significant current had flown sideways, with a component
on the cable shield, during transverse measurements.

IX. CONCLUSION

This paper presented the concept of five different types
of coupling on multiconductor shielded cable of circular or
almost circular cross section. We showed that for simple cable
structure, the relevant parameters for these types of coupling
could be assessed. We also showed how to use the five types
of coupling in a field-to-wire coupling problems. '

Preliminary experiments prove that type 3 coupling, up to
now forgotten in most field-to-cable coupling calculations,
cannot be neglected because it gives rise to a cable response
in places where the incident magnetic field is parallel to the
cable.
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Concerning the theory of the mechanisms of the different
types of coupling, we are aware that we did the easiest part,
leaving computational difficulties to others. We are currently
planning to get more experimental data on the new types of
coupling (types 3, 4, and 5), as well as on type 2 (we are not
aware of any published results for through elastance).

One of the interesting point in this experimental work will
be to devise the experiments in such a way that for each of
them one type of coupling clearly dominates.

APPENDIX 1
CHARGE DISTRIBUTION AND EFFECT OF E FIELD

Fig. 10(a) shows how the electric field lines around the cable
look like, this applies to both geometries of Figs. 8 and 9.
How shall we compute the charge distribution and the effect
of electric field?

First of all we know that the radial distribution of the surface
charge density ps can be developed into a Fourier series as

ps(8) = pso + ps1cos(f + 1) + psacos(26 + w2) + - -
+ psncos(nd + @n) +---. (20)

The first term in this development, taken alone, would describe
the homogeneous charge distribution on a cable isolated in
space, as shown in Fig. 10(b). One can easily check that the
second term describes the charge distribution of the cable if
it were floating in the middle of the two parallel plates of a
(large) capacitor, as shown on Fig. 10(b). None of the three
parts of Fig. 10 are derived from a calculation, they are only
estimates, drawn by hand. However, it seems reasonable that
the two first terms in (20) will give an acceptable description
of Fig. 10(a). Assuming that we now use this approximation,
and taking 6 = 0 at the point of contact between the cable and
the ground plane, because of the symmetries, and because the
surface charge density vanishes at § = 0, ps becomes

ps(8) = ke, E(cos 8 — 1) Q1

where k is a dimensionless coefficient, and E is the applied
(i.e., incident) electric field. The first way of assessing k is to
say that if we assume that (21) is exact, we can simply use an
analytical approach with the following steps. One must first
remove the ground plane, by using the image theorem. The
problem to solve now consists of two cables with opposite
surface charge distributions. We now apply the superposition
theorem to the charge distribution on one cable, as described
by (21); the field (infinitely) far from the cable is only related
to the term of cosf, and (6) gives the field value: 1 V/m
at infinity produces a charge distribution of 2¢,cosé on one
cable. If one considers the two cables and their respective
charge distrilutions, this electric field value is doubled: 2
V/m produce a charge distribution of 2¢, cos § on each cable.
Therefore, the value of k is 1.

The second way (harder) is not to trust analytical calculation
and to try a numerical approach. We did so with our ICAP/4
simulation software. Fig. 11 shows the equivalent resistor
network that we used. All resistors are equal except those at
the left and right border and around the cable. We “measure”
the total current collected by the cable, equivalent to the total

®

Fig. 10. Shape of the electric field around a cable. (2) Cable inside the cell.
(b) Charged cable in free space. (c) Cable between capacitor plates.

SRR N

Fig. 11. Schematic used for the calculation of the displacement current on
the cable inside the cell, with the ICAP/4 SPICE simulation package. The
circle indicates the cable position. The potentials appear inside rectangles.

charge. In order to get with (21) the result of our numerical
simulation, k£ would have to take the value 1.07, close enough
from the analytical result.
In the following, we will use k = 1, and the surface charge
density becomes
ps(0) =~ e,E(cosf — 1) (22)
Anywhere on the ground plane, far from the cable, the surface
charge density is only €, E. If one integrates (22) on the cable
circumference we see that the cable collects the displacement

current on a width of 2xr,. From the definitions of (g and
{p, we can compute the displacement current diy received by
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a length dz of cable as

s

di . z
T~ urd Capso+ o [ psicostadb b @
-3
which gives
dig )
T = 2jwroe, E{Cp — m(R}. 24)

APPENDIX II
CURRENT DISTRIBUTION AND TOTAL CURRENT

How can we compute the current flowing along the cable
when the cable is installed according to Fig. 87 We will use
a property that is only valid at frequencies for which the
current may be regarded as a surface distribution, because of
the skin effect. At such frequencies, the charge and current
distribution inside a transmission line are the same, except for
a multiplying constant. Using (22) we get

js = ng(l—cosﬂ) (25)
and the total current flowing on the cable is then
2 E
I = / —(1 - cosf)r, df (26)
0 Tlo
I, = 21rron£. 27

Typically, the skin effect becomes visible on braided cables
from 1 MHz. We may assume that the use of (27) will be
acceptable at this frequency and above.
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