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The Basis of a Theory for the Shielding by Cylindrical
Generalized Screens
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Abstract—Two new concepts applicable to cylindrical general- description of the behavior of a shield, that can be implemented
ized screens are introduced: standard responses and standard ex-yithout restriction as follows:
citations. The standard responses allow the description of any cur-

rent and charge distribution on the screen. For a given generalized ~ — On the nature of the excitation, any field structure being
screen’s cross-section, they can be derived from the complex poten- taken into account;
tial of a simple electrostatic problem. The standard excitationsare — on the shape of the shield, which is a cylinder of arbitrary

electromagnetic (EM) field configurations suitable for a descrip-
tion of fields created by sources external to the screen. All stan- L )
dard excitations are explicitely computed in the case of a circular ~— ON what is inside the shield.

cylindrical shield. We present only three standard excitations for In this paper, a shield or screen denotes a structure of conduc-

the case of the elliptical cylinder, and for the case of a rectangular tive material (electric or magnetic conductor) intended to reduce
cylinder. the penetration of EM fields into an assigned region. This struc-
Index Terms—Cables, electromagnetic (EM) coupling, shielded ture is often very complex, for instance in the case of a braid or
multiconductor cable, shielding, standard excitation, standard re- of a metallic tape wound around a multiconductor bundle. This
sponse. is why we will often refer to a generalized screen containing the
real screen.
|. INTRODUCTION A generalized screen or generalized shield (see [6], or [7, Sec-
i ) tion 10.2]) is defined as any combination of screens (made of
WE HAVE previously presented [1] the first results of anyectric conductor or magnetic conductor) and exclusion vol-
_analysis of shielded multiconductor cables with respegines, providing EM attenuation. Exclusion volumes are defined
to their shielding performances. This early work introduced thg; \,olumes which may not contain field sources or conductors,
concept of five types of coupling between an external electrgytentially responsible for harmful coupling in the problem of
magnetic (EM) field and the cable. Our paper stated that the §gkrest. In practical computations, exclusion volumes are con-
of “type of coupling” considered was not complete, because 8fjered empty. In this paper the generalized screen will always
infinite series of type of coupling was necessary to describe thg a closed and connected set, and its boundary will be the union
effect of charges on the screen. We later decided [2] to referdpa cylindrical internal boundary and of a cylindrical external
the five types of coupling defined initially, as the fieeintypes boundary, having no point in common, the latter surrounding
of coupling, because weelievedhey indeed gave an acceptabléhe former. The internal boundary of the generalized shield sur-
picture of the behavior of most cables in many circumstancegunds a connected open set, later on referred to as the “volume
However we were not able at that time to give a complete list pfside the generalized screen.” The points of space not included
the coupling types and their associated parameters. in the volume inside the external boundary, are said to be in the
After our first article on this subject, we wrote several papefgolume outside the generalized screen,” considered an open
that improved our analysis, and also presented new experimestgtl Thus, the volume inside the generalized screen, the volume
methods and results: a “parallel H-field probe” was designed the generalized screen, and the volume outside the general-
and manufactured for the measurement of the parallel transfeed screen cover all space and any two of them have an empty
impedance [2], [3], and an “axial H-field probe” was built for théntersection.
measurement of the axial transfer impedance [4], [5]. Interesting
experimental results were also obtained with a rectangular TEM
cell [1] and later with a GTEM cell [5]. [I. CHARGES AND CURRENTS ON THEGENERALIZED SCREEN
Extensions of this work led us to a theory of the shielding per- Throughout the pape3 = (e., e,, e.) is a right-handed
formances of nonideal cylindrical shields. The present paperssis of orthogonal unit vectors. An originbeing chosen, the
focused on two basic concepts of this theory, applicable to ggrectangular) coordinates with respectiarez, y andz, and
eralized screens: standard responses and standard excitatiblesggeneralized screen’s external boundary will be a cyliGger
These concepts are somewhat general because they allow a vaiighted along thé€)z axis (see Fig. 1). The intersectidizo)
of this cylinder and a plane of equatien= z, in 1, is not nec-
essarily circular, but itis a closed continuous curve. At any point
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Fig. 1. Our choice of curvilinear coordinates.

the surface and perpendiculardpande.. The curvilinear co- alized shield. Otherwise, charges may appear on the generalized

ordinatex? on everyl'(z) curves is chosen in such a way thashield’s internal or external boundaries, and also inside the gen-

it is dimensionless, that it is a bijective mapping fr¢mr, 7] eralized shield (we may for instance have defined the general-

to I'(z0), and that thes? = constant curves ofir are straight ized shield of a cable as made of a copper braid and a polyvinyl

lines parallel tce.. (12, =) is therefore a system of orthogonakhloride jacket). The charge densijtytherefore, depends on the

curvilinear coordinate on the cylind€r. One can extend the three coordinates!, «2, z, and we shall regard it as a distribu-

definition of the coordinate:” to R, so that the map that asso-+ion. An integration of the charge densjgyon the generalized

ciates a coordinate’ to the corresponding point diYzo) be- shield thickness gives a quantity that has the same unit as a sur-

comes a periodic function of pericr. face charge. However, it will be more convenient to introduce
We can obviously derive curvilinear coordinates, «2, ») the “local per-unit-length charge density” (in C/m) that we will

for the entire space, by properly choosing a family of cylindexdenotep,, and define as

C(ut), one cylinder of the family being the external boundary

Cg of the generalized screen and another matching the in- 5 “E 1

ternal boundaryC; of the generalized screen, each cylinder pr(u’, z) =2m /u1 phyhz du )

of the family having at any point a local right-handed basis !

(e1, e2, e;) of orthogonal unit vectors and a system of coofyhere the path of integration is a portion ofid = constant
dinate(w?, =) built as above, and subject to the condition thaind» — constant line.

the infinitesimal line element is In the case of a perfectly conducting boundary.ht= 1,
and if all EM field sources are in the volume outside the general-
dr = hier du' + hoes du® + e, dz. (1) ized screen, charges are only present as a surface charge density

ps on the external boundary, apds given by
One can see thdt; andh, are not dependent on Also, the
external and internal boundaries of the generalized screen being  p(u®, 12, 2)hy dut = ps(u?, 2)6(ut —uk) dut  (3)
cylinders of the family, they can respectively be described by
the equations.! = u}, andu! = u}. The Fig. 1 illustrates whereé is the Dirac distribution. We therefore have in this spe-
our choice of coordinates, and shows a paihof curvilinear cial case:
coordinates(uy, u3,, zn). One can build an infinity of dif- oL
ferent such curvilinear coordinate systems (for instance using ps = 27hy “)

problems of electrostatics for whielf = constant surfaces are ] ) )
equipotentials). Returning to the general case, we notice that, considered as a

In the first half of the following discussion, up to (15), weunction 0f927 pr is periodic of perio@r and can therefore be
shall only consider time-domain quantities. expanded in a Fourier series
If the generalized shield has a perfectly conducting external

boundary, chgrges can only appear on this extgrnal boundarpr(u{ 2) = pro(z) + Re Z prn(2) explinu?) (5)
when all EM field sources are in the volume outside the gener- —
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where the coefficienty is real, where for. > 1 the coefficient where the coefficients, o o andiyv 4 ,, are real numbers, where

pLn is complex, and wher = —1 with Im(s) = 1. for n > 1 the coefficientsjy o, andiy 4, are complex, and
It is important to notice that the total per-unit-length chargeherei? = —1 with Im(4) = 1.
carried by the generalized screen is given by We note that the total current flowing along the shield axis is
12 1 " 2 1 m
/ hihap du” du” = o /0 prdu” = pro.  (6) / hihoj.e. dut du® = 5 / ivadu® =iya0. (13)
0
shield shield

If the generalized shield has a perfectly conducting boundary,we know that for a vectoF of curvilinear coordinates
a surface current results. Otherwise, such a surface current CAD F,, F.) the value of the divergence is given by

not take place, but an integration of the current dengitg-
garded here as a distribution, on the generalized shield thick-

: . . ) 1 d
ness (with respect to the variablé) gives a quantity that has V - F = e | Bt
the same unit as a surface current. However, it will be more con- 12
venient to introduce the “local current vector” (@) that we will
denotely-, and define as

g
(h1hoFy)| .

15]
(hQFl) + w(thg) + 9

(14)

The equality divj + dp/dt = 0 for the conservation of
charges in time domain, once multiplied by/»> and integrated

1y = iy re1 + jyohoes + iy ae. 7 .
v VREL T JVol2ez Tiva 0 with respect ta:* along au? = constantand = constant path,
. becomes
with
( '”'}E‘ e { 8 . a . a . 1
ivn = 27) hoi.eq dul / —(hQJ.el) + —(hlj.eg) + (hthJ.eZ) du
VR v 7,1/u} 12]).€1 du u} aul 8u2 Oz
U a u}E‘ 1
jvo = 27r/ hij.es dut (8) + e hihspdu” = 0. (15)
ul up
. VU'E . 1
v = 27r/ hihsj.e. du Assuming that the generalized shield is isolated, we fuaye=
\ i 0atu! = u}, andu' = u}, and suppressing&“* dependence,

where the path of integration is a portion of:4 = constant we get in the frequency domain

andz = constant line. . .
diva  djvo

In the case of a perfectly conducting boundary:at= w3, - +jwpr, =0 (16)
and if all EM field sources are in the volume outside the gen- 9z I
eralized screen, there is a surface curfgnbn the external . .
N wherej2 = —1 with Im(j) = 1. We note that used in (5),

boundary, is gi by:
oundary, ang s given by (11) and (12) corresponds to an angular parameter on the gen-

eralized screen, wheregaised in (16) corresponds to a phase
parameter. Separately, they are the same complex number. How-
) ) S ) _ever, because we are going to use both of them in expressions
Whe_reé is the Dirac distribution. We, therefore, have in thigynere they will have different meanings, it will be necessary to
particular case consider those two numbers, and also the phases of the complex
guantities in equations where they appear, as having no relation-
(10) ship. Mathematically, the numberandj are in fact real quater-
nions, not complex numbers. They can be regarded as complex
In this case and if the shield is isolategz = 0. This will humbers only when: either only quaternions of e jR sub-
be approximately the case for good shield, isolated. Howev&Pace are presentin a formula, or only quaternions dktheR
iv & should not be ignored for imperfect shields: the porpoisirgjospace are present in a formula. Any quantity relatéevio
phenomenon (see [7, Section 9.4.6)) is precisely caused by sérfalled “angular,” and any quantity relatedjtwill be called
currents. “frequential.”
Returning to the general case, let us expand the two last col-€t us also note that the choice of the definitions in (2), (7),

ordinates ofiy- in a Fourier series in the following manner: ~ and (8) was made for later convenience in (6), (13), and (16).
This last expression can be easily expressed in the angular

oo Fourier domain. Replacing .4, jvo andpy, in (16) with (5),
ijn(Z) exp(ian)] (11) (11), and (12), then suppressing the(inu?) dependence, we

jut, w?, Db dut = js(u?, 2)6(ut —uk)dut (9)

p—— i‘/f
o 27Th2

Js

vo(u?, 2) =jvoo(z) + Re

n=1 obtain
iva(u?, z) =ivao(z) + Re ;::1 ivan(?) eXP(i”UQ)] (12) 3'5_(;:0 + jwpro =0 (17)
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Fig. 2. A combination ofj\ o1 per-unit-length current and, ., ; current.

and foranyn e N, n > 1: u? coordinate differing of about) theiy- 4 ; components dom-
inates. At points B and D th@-»; component dominates, and
Fivan ) S between these two points of equal coordinate, the angular

9, T MIvont T IwpLn = 0 (18) phase difference ofyo 1 is aboutr.

The treatment of the generalized shield’s behaviorfes 0

(18) being an expression in the field of real quaternions. In (183,therefore a global problem, that is to say a problem involving
each of the three quantitiés 4 .., jvon, andpr,,, has a mod- the entire shield and a return circuit, but the shield behaviay
ulus, an angular phase as it is used in (5) or (11) or (12), anéh@a local problem for. > 1. A solution as presented on Fig. 2
frequential phase, as it is used in (16). We note that the secdatian homogeneous metallic shield is not always possible for
term of (18) does not show up in (17). complying with (18) on a given generalized screen: we can for

The results (17) and (18) deserve some more comments.iagtance think of a shield made of thin isolated wires parallel
we know, it is experimentally possible on an electrically shote thez axis. In this casejyo.,, per-unit-length current cannot
length of generalized shield to have either negligilg (this flow, and the establishment of 1, currents is always a global
is what is obtained in a short-circuited triaxial set-up for theroblem.
measurement of the per-unit-length transfer impedance of a
coaxial cable). In this case (13) and (17) say that the conser-
vation of charges becomes a conservation of the longitudinal [Il. DEFINITION OF THE TYPES OFRESPONSE
currentiy 4 o. For a current to flow on the generalized shield, it
is therefore required that a return circuit exists, which provides The shield being passive, the charge and currents on the shield
a suitable path for the return current. Equation (18) says tha"@y be regarded as a response to external stimuli. In this para-
return circuit is not required for > 1: ajyo,, per-unit-length 9raph, we shall define the vocabulary and give some basic prop-
current may become the necessary return curreritfgy, cur-  erties for a classification of charge and current distributions on
rents, as shown on Fig. 2 in the case- 1, on an homogeneous the generalized screen. This vocabulary is centered on the word
metallic shield of strange cross section. response

On Fig. 2, we observe a situation where the only nonnegli- Definition: Response. We shall call “response of the gener-
gible components of the local curreit flowing on the gen- alized screen,” or simply “response” the pair of the current dis-
eralized screen, arf-o:1 andiy 4 1. The local current, which tribution and the charge distribution on the generalized screen.
only depends om? andz is shown orthogonally projected on  Theorem 1:Let us denote the internal b(_)undary By and
the generalized screen’s external boundary. The values of fCr the external boundary of the generalized screen.
angular phases gf-o1 andiy 4 ; along thez axis, are suchthat i) There exists a definition of théu!, w2, ») coordinate
vortex-like current appear. Such eddy current may show-up be-  system in the volume of the generalized screen and on
cause of the local application (by external sources) of avarying the boundarie€; andCg, such that:
magnetic field orthogonal to the > axis. On Fig. 2, atpoints A  —  if over Cg we place a thin perfect electric conductor
and C (lying in the same plane orthogonal to the axis, with the and charge it, a local per-unit-length charge density
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pr, independent of the variableg andz would corre- Note that we will show in Section VI that? can often be
spond to the electrostatic equilibrium of this conductaromputed with a conformal mapping? being therefore con-
assumed the only object in space; tinuous.

— ifoverC; andCg we place a thin perfect electric con- Theorem 2:Let a definition of the(u!, u2, 2) coordinate
ductor, and obtain in this way the two electrodes of system satisfy the hypothesis of the Theorem 1. The tangen-
capacitor filed with a medium of homogenous permitial componenty se.. + jyohoes of the local current vectds,
tivity, the surfaces:! = constant in the volume of the and the local per-unit-length charge dengityare defined in a
generalized screen would be the equipotential surfacesique way (the proof is left to the reader).
when this capacitor is charged. Definition: Tangential response. Let a definition of the

ii) Moreover, this definition of theu? coordinate in the (u!, u?, z) coordinate system satisfy the hypothesis of the

volume of the generalized screen and on the boundarieiseorem 1. We caltangential responsef the generalized
C; andCg is unique but for an arbitrary additive constantscreen the paifiy ae. + jyvohees, pr) of the distribution of

Proof: Let us assume that we place a per-unit-lengfihe tangential componedt se +jvohze; of the local current
charge@, constant along the generalized screen, on the m¥gctor, and of the local per-unit-length charge dengity
allized external boundar¢, assumed alone in space. The Definition: Standard response. L@t 1. +jvohzes, pr)
surfaceCg being invariant by any translation alor@z, the be a tangential response of the generalized screen. We define
surface charge densipys which appears o6 is also invariant the standard responses of the generalized screen according the
by such translations and does therefore not depend bet us uUnique decomposition of the tangential response with (5), (11),
assume there exists a coordinafeaccording to our wishes, and (12), in the following way:
and let us callL the length of the closed cuni&0). Because i) a response of typéy 4o is aiv.a(u?, z) = ivao(z)
the local per-unit-length charge densjty is constant, it is current;
equal topy, o and according to (6) we have ii) a response of typero is apr(u?, z) = pro(z) per-
unit-length charge;
iii) a response of typevoo is ajyvo(u?, 2) = jyoo(z)
per-unit-length current;
iv) Vn € N*, aresponse of typg, .4, is aiy4(u?, 2) =
ivan(2)exp(inu?) current;
V) ¥n € N*, a response of typgy ,, is apr(u?, z) =
prn(2) exp(inu?) per-unit-length charge;
vi) Vn € N*, aresponse of typg-o . is ajvo(u?, z) =
Jvon(z) exp(inu?®) per-unit-length current.
Any standard response can also be regarded as a tangential
responseYn € N,

1 27
Q= o / pLdu® = pp (19)
0

using (4), we get

Q

ho = .
> 2mps

(20)

If sis an arc length oi(0), the coordinate® satisfies

du? _ 2mps
ds  Q

(21) — a response of typey .4, is the tangential response
(14 n(2) exp(inu?)e., 0);
— a response of type;, is the tangential response

This differential equation uniquely defined but for an arbi- (0, prn(2) expl(inu?));

trary additive constant, which establishes the unicitg gnThe
unicity on the generalized screen and on the boundéyiésa
direct consequence.

— a response of typeivo, is a tangential response
(Jvon(z)exp(inu?)es, 0).
It shall be noted that this classification does not take into ac-

Let us now establish the existence of the coordinate system.

. ; . count possibley g currents. However, their mere existence is
The constant coordinate surfaces can be build easily. The on . . . .
o X X nat denied nor neglected: they are only not described. This is of
remaining problem is the mapping of the = constant and

; ; no consequence, because such current will usually be related to
z = constant surfaces with?. The per-unit-length charg®, q y

beina placed alona the generalized screen. we see that if the gl response of one of the types defined above. As mentioned pre-
ng p 9 ge 12 » WE S€ Hn v%usly, the porpoising phenomenon on braided shields has for
face charge densitys which appears oz alone in space is

. X example been proved to be related to a response ofi{ypg.
mte_grable, (21) can be use_d tc.) compufe I—_|ow_everp5 being Theorem 3: Any tangential response of a given generalized
defined as a derivative (derivative of a distribution) of the Char%%reen can be written in the form of a sum of standard re-
versus the coordinatesands, it is necessarily Lebesgue—inte—sponse’S each of a different type, and this expression is unique
grable. Also, it is also physically obvious that is either ev- Proz;f' This theorem is simpiy the consequence of the ex- '
erywhere positive or everywhere negative. We can therefore ?Qfence an.d unicity of the constructionef andiy, and of the

tain »? from (21), and it will be monotonous. For a coordinat%Our Ve

Lo : ier series used in (5), (11) and (12).
system builtin this manner, according to (4) we have Definition: Canonical decomposition. The unique expres-

sion defined in Theorem 3 is called the canonical decomposition
of the tangential response.

Definition: Pure tangential response. At a given painthe
Q.E.D. tangential response is said “locally pure” if there is only one

pr. = 2rhaps = Q (22)

andps is a constant.
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nonvanishing term in the canonical decomposition at this point.We may also state that far > 1, the standard responses of
The tangential response is said “pure along the screen” if théyeejv o ,, need not be taken into account of one intends to build
is only one nonvanishing term in the canonical decompositidhe set of the physically achievable tangential responses along
along the screen: in this case the tangential response of the eritieegeneralized screen. The introduction of a standard response
screen is a single standard response. of type jyvo, in the theory is however necessary for a local
Submitted to a given EM environment, the generalized shiali@scription of the tangential response.
will generally have a canonical decomposition containing the Theorem 6: If the external boundary of a generalized screen
superposition of several standard responses. However, at this. perfect electric conductor, fagr € N*, any p-tuple of
point we do not know if it is possible to create a pure responstandard responses which do not include any standard response
of a given type on a given shield, either locally or along thef type p;, o, nor any standard response of type,,, for any
screen. Answering this question in detail is the purpose of thec N*, thisp-tuple containing a maximum of one standard re-
next paragraph. sponse of each type, is physically independent.
Proof: Let usfirst place the generalized screen in vacuum.
The external boundary being a perfect electric conductor, we
haveiy r = 0. We will only use a source in the volume outside
Definition: For a given generalized screen andfoe N*, the generalized screen. Therefore the only possible currents will
ap-tuple of standard responses is said physically independ@gtsurface current on the external boundary. In this case (17) and
if and only if, for anyp-tuple of real quaternions, we can de{18) are equivalent to the conservation of charge.
sign a physically achievable experiment, in which the canonicalFrom any linear combination of the standard responses
decomposition of the tangential response along the screen wiketing the hypothesis of Theorem 6, we can obviously create
contain each of the standard responses multiplied by the quatenew tangential response by adding standard responses of type
nion of same index. pero and of typejv o, in such a manner that (17) and (18)
We note that this definition makes use of the trivial structur@re satisfied. Let us call this tangential response the modified
of vector space on the set of standard responses, regardeteagonse. From the point of view of electromagnetism it is
tangential responses. Because of the orthogonality of the expossible to move, with nonEM forces, the free charges of the
nential functions in (5), (11) and (12), apytuple of standard conducting external boundary, in order to obtain the modified
responses of different types is linearly independent. Thereforeegponse on the generalized screen. These nonEM forces are
p-tuple of standard responses is linearly independent if and onigually taken into account with an electromotive for€e
if all standard response it contains are of different types. Because we are only interested in surface current, we can
Also, the physical independence ofduple of standard re- postulate tha€ is tangential to generalized screen’s external
sponses implies the linear independence optheple. However boundary. If the screen was a medium of finite conductivity
the converse is obviously false, because the laws of phgsids o, and if a total electric field was present, the effect of the
the structure of the generalized screiempose additional rela- nonEM force would be described by the equation
tions.
Theorem 4: A standard response of typ’e_Ao and a stan- j=o(E+e). (23)
dard response of typey, o are not physically independent, be-
cause they are related by (17), which implies that if the standard
response of typéy- 1o is known along the generalized screen, N the perfectly conducting medium of interest here, we can
there is only one possible standard response of typge only state thafE + £ has a vanishing tangential component,
Theorem 4 means that the standard responses oftype which can be written, if we note the unit vector normal to the
need not be taken into account if one intends to build the set@tneralized screen pointing outward
the physically achievable tangential responses along a general-
ized screen. The introduction of a standard response oftype E=(E -nn—e¢ (24)
in the theory nevertheless addresses the need for a local descrip-
tion of the tangential response.
Theorem 5:Vn € N*, a standard response of type ., a

IV. INDEPENDENTSTANDARD RESPONSES

E being the electric field at the surface of the generalized screen.

standard response of typeo ,, and a standard response of type The use of nonelectromagnetic for_ces acting on the ger_1era|—
p1.» are not physically independent, because they are related A SCreen can now be suppressed if we observe that their pur-
(18), which implies that if the standard responses of tpe,, pose is to compensate the force due to the tangential component

andp; .. are known along the generalized screen, there is orﬂ{/the electric field caused by the response. In other word, these
one possible standard response of type nonelectromagnetic forces were used to create a discontinuity

Thus, forn > 1, the standard responses of tyjge, ,, cannot of the tangential component of the electric field across the ex-

exist independently of the other types of standard responé% al boundary of the generalized screen. We know (cf. [8, p.

along the generalized screen. According to (18), the charg% ) that the same effect can be obtained with asqrface density
which appears because of a standard responses ofitype of magnetic curreriM s placed on top of the generalized screen,

and which are not removed by a longitudinal variatioriof ,, taking on the value
current of suitable amplitude, cause a per-unit-length charge
PLn- Ms=Exn=—¢xn. (25)
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This surface density of magnetic current therefore allows the the electric potential, and we shall nétehe opposite of the
creation of the wanted modified response. One can show tiratginary part of;, usually referred to as the stream function.
this layer of magnetic surface current is equivalent to a doubleWe know (see [9, p. 236]) that the lindé = constant are
layer of electric surface current. It is clear that one could, witfield lines, and that the flux of the electric field (per unit length
small enough conductors and generators, create a device infihe directionOz) between the field line¢” = F; andl’ =
proximating the double layer of surface current. This is what, is simply 5 — 7. Specifically, on the conducting external

was meant by “a physically achievable experiment.” boundaryCg, the charge surface densjy takes on the value
Theorem 7: If the external boundary of a generalized screen
is a perfect electric conductor ar

N . : o PS = €075 5 (26)
i) it is always possible to create a field configuration (i.e., h? du?
field values as a function of space coordinates) that will In th fint ¢ that the local it
produce a locally pure standard response of any giv?n n the case ol interest, we assume that the local per-unit-
type: ength charge density;, is constant for the charge distribution

i) and possibilities of creating pure standard responsggeleCtrOStat'C equilibrium. According to (20), we may write

along the screen are only limited by the Theorems 4-6

(the proof is left to the reader). Q = 2rhaps = 27&?0% (27)
U

whereq is the charge on the generalized screen, per unit length
V. DEFINITIONS OF THETYPES OFEXCITATION alongOz. We can see that if the complex potentja produced
o — . .__hy the per-unit-length charg@ = 427w, x 1 Volt, +? is defined
rDef:}nlt\llsn.detiindardt i)éjc'tr%t'o?(' itF?ir na ?lven gzzelrz?\l/:zegy u? = £F/1 Volt, to which might be added any constant.
screen, we detine a standard excitation at a paj Once a complex potential is computed is therefore known.

field conﬂgu_ratlon produced_by sources in the V(_)Iume Outs'dl%e standard responses are then also known, because they are
the generalized screen, which would produce, if the exterrbal

boundaryCg was perfectly conducting, a locally pure stan- xplicitely defined by (5), (11), and (12).
dard response at. The type of the standard excitation is by
definition the type of this standard response.

We note that this definition is valid because we first estalyx. Standard Responses and Standard Excitations on the
lished Theorem 7. It introduces standard excitations of tyg&rcular Cylindrical Generalized Screen
Wvan, Of typepr , and of typejy o . It should be emphasized | ¢ s first closely examine the case of a generalized screen
thatmany different EM field configurations are likely to produceqing an external boundary being a cylinder of revolution. If
the same standard excitation at a painThere is therefore no iis external boundary was conducting, charged, and alone in

uniqueness to be expected here. g)ace, it is well known (see [9, p. 241]) that a possible complex
0

A conjecture is that any EM environment (i.e., any appliefotential for the per-unit-length chargeon the cylinder would
EM field configuration in the volume outside the generalizeg, given by

shield) of a given generalized screen, can be written in the form

VII. CYLINDER OF REVOLUTION AS EXTERNAL BOUNDARY

of a sum of standard excitations at a paineach of a different Q ]
type. If true, this statement seems difficult to prove. We shall ¢=- 2reg I +iy) (28)
demonstrate it in Section VII, in the case of generalized shield
of circular cross section. so that we would obviously have
V=- In+/z2 + 42
VI. CALCULATION OF THE STANDARD RESPONSES AND 2meq . (29)
EXCITATIONS P arg(x + iy)

2
This paragraph will introduce the basics of a method for the feo

computation of the standard responses and excitations. Thi?hus,according to Section VI, we can choage= 6, § being
method will be implemented in the Sections VII-IX, in thregne argument of the complex variable, and take the coordinate
situations of increasing complexity for the shape of the externg1 2 2) equal to the circular cylinder coordinate, 6, z),
boundary: the cylinder of revolution, the elliptical cylinder, an r;/vhiéh h, = 1 andh, = r. Because this separablevcoordi-

the rectangular cylinder. o ~nates are convenient for calculation, let us try to compute the
In fact, this paragraph focuses on the main difficulty: definingandard excitations.

a coordinate on the external boundary, according to the hy- | et ys therefore consider a (generalized) screen placed in

pothesis of Theorem 1. This being a two-dimensional potentigdcuum, with a perfectly conducting circular cylindrical ex-

distribution problem, it will be treated with analytic functionsierna| boundary of radius,. In the volume outside the screen,
In order to solve the problem of a charged conducting external

boupdary, 9n|Y objectin s_pace, We_ shall consider a complex POz order not to confuse the reader, we shall not ugelready utilized) but
tential¢ which is an analytical function. The real p&ftof  will  « + iy for the complex variable.
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suppressing a’«* dependency, we may write the free-spacthere is no Bessel equation, and the differential equation leads
(see [10, pp. 355-361], [8, pp. 198-20¥]fields in circular
cylindrical coordinates as

4

Hy

where

me [ i 3
/

Hz_/

k
a¢n awn ok
o Odn i
> nlbndn + dnwnﬁ} €9 dh
ok h oo
Eo = /,k {—‘77 n;m”(and)n +entpn )i+ ko
i a(/)n ar(/)n —jhz
I (Gra)f e
k 0 .
E,,:/ (B2 = 1) 3" (anp + cathn) =9 dh

n=—oo

oo

Z (and)n + an/}n)i - Jh

- ad)” az/}" —jhz
n_z_:oo<bn o T )}e dh
k . oo
{Wn;o (0 e+ ) =
Z n(by by + dn’(/)n)L} e Ihz dp

( n¢n + dnz/)n)e_jhz dh
(30)

n=—oo

the integem and the real are separation “constants;”
propagation “constantt

a, andc,
b, andd,,

Tlo

k

are ¢ dependent) amplitude dis-
tributions, expressed in Vin

are (» dependent) amplitude dis-
tributions, expressed in Afm
is the free-space
impedance;

is the wave numbep/co;

wave

and where the functions, andv,, are defined by the equations

stemming from the separation of variables. In the case where

h # +k, this is a Bessel differential equation and we obtain

Pn(r) = 1515 (VEZ — h2r) en?

| (31
Pa(r) = Hg) ( k2 — h27‘) em?

)

{

which are functions depending érand wherdl§" andH are
Hankel functions with a frequential phase. In the case +k,

2Both Stratton ([10, chap. VI, Sec. 6.6, (28) and (29)]) and Harrington ([8,
chap. 5, Section 5-1, (5-13) and (5-14)]) use the same complex number for the
angular phase and the frequential phase. This is erroneous because, for |nstanc

a rotation ofr/2n is not equivalent to a time translation of 2.o. The appro-
priate expressions are (30), (31) and (32).

us to

™ (r/ro)” forn #0
e forn =0
e (r/rg)™™ forn #0°

™ ln(r /7o)

utr) = {

wn (7) = {

For h # £k, we note that the functions,, are cylindrical
waves propagating toward th@> axis, and that the functions
1, are cylindrical waves propagating from theaxis, so that
only the fields components related to titg functions can be
caused by the current and charges on the screen.

Because there are angular phase and frequential phase depen-
dencies, we note that the amplitude distributiepsc,, b,, and
d,, as well as the field amplitud®,., Fy, E., H,, Hy andH,
are Hamilton’s quaternions.

For h = 4k we can check thaiy andby are not associated
with any field component. Fdr = +k andn # 0 the EM fields
depend only on the variables, andv,, defined by

{
Un
whered is the Dirac distribution. The variables, andv,, there-

fore have the dimension of Vm. In this case we in fact have a

TEM wave propagating along the shield axis, and the only non
vanishing field components arg. and Hy given by

{ (34)

We can observe that we only considered the valuésyfing
rise to periodic solutions along the screen axis, which corre-
spond toh real, included in the intervdl-k, k|, whence our
integration path in (30).

The boundary conditions on the (perfect) shield’s external
boundary isky = E. = H,. = 0 atr = ry.

For h # +k, the boundary condition is equivalent to

(v anH(l) (\/k2 — h27’0)
+c,H (2) (mh)) =0

(1)
ey

dH(Q)
n d; (\/ k2 — h27’0) =0

(32)

forn=20

6(h — k) = an, Fnobyt

: (33)
§(h — k) = cp £mpdyi

Er _ :FJ n (U,n(T/TO)n _ Un(T/T())_n) Cv,n& e:F]kz
T .
E, = £noHs

(35)

so that, the variablg not withstanding, the fields depend on two
arbitrary amplitudes.
For h = £k, the boundary condition is equivalent to

{

& that taking (33) into account, the sign/ot= +% not with-
standlng the fields depend only one arbitrary amplitude.

VYn#0
dg=0

(an F Uobni) + (Cn + nodni)Tan =0

(36)
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For any field configuration, from (8) and boundary condition€. Locally Pure Excitations on the Circular Cylindrical
Generalized Screen

on the external boundary, we find

oL = 2nroeo B,
jvo = —27FHT . (37)

iLfA = 27(7’0H9

At this stage, we can see that the componentd 0bf index
n correspond to standard excitations of typg ,., that the com-

We now understand that, with an appropriate choice of inci-
dence, or by taking advantage of interference, it is possible to
locally create a field configuration where only one standard ex-
citation dominates. Thus:

ponents ofH_. of indexn correspond to standard excitations of

type jvon, and that the components &f. of indexn corre-
spond to standard excitations of typg,,.

B. Simple Combinations of Standard Excitations on the
Circular Cylindrical Generalized Screen

It is now possible to establish the complete list of the free-
space field configurations which lead to the simplest combi-
nations of standard excitations, allowed by Theorems 4 and 5
along any generalized screen with a circular cylindrical external

boundary.
— A standard excitation of typg- 4 9, only combined with a

standard excitation of typey, ¢ as prescribed by Theorem

4 can be created along the generalized screen: either with

an EM field including onlyh = +k components with all
amplitude distributions equal to zero except or with
an EM field including onlyi # 4k components with
all amplitude distributions equal to zero exceptandc,
related by (35). We note that in the special case 0,

the canonical decomposition only contains the standard

excitation of typeiy 4 o.
A pure standard excitation of typg-o o can be created

along the generalized screen, with an EM field including
only i # £k components with all amplitude distributions

equal to zero excepb andd, related by (35).
Forn > 1, a standard excitation of tyge 4 ,, only com-
bined with a standard excitation of typg ,, as prescribed

by Theorem 5 can be created along the generalized screen:

either with an EM field including onlys = +& compo-
nents with the amplitude distributions, andv,, related
by (36), or with an EM field including onlyt # +k com-

ponents with all amplitude distributions equal to zero ex-

cepta,, ande, related by (35).
Forn > 1, a standard excitation of typ&g¢ ., only com-
bined with a standard excitation of typg ,, as prescribed

by Theorem 5 can be created along the generalized screen,

with an EM field including only: # +% components with
the amplitude distributions,,, ¢,, b, andd,, related by
(35) and the additional relation cancelliffy.

Forn > 1, a standard excitation of typs, ., only
combined with a standard excitation of tyjges ,, as pre-

scribed by Theorem 5 can be created along the generalized

screen, with an EM field including only # +k compo-
nents with the amplitude distributions,, ¢,, b, andd,,
related by (35) and the additional relation cancelliig
this being in general only possible fbr# 0.

In order to obtain a standard excitation of tyges o lo-
cally pure in the neighborhood ef = 0, we can for in-
stance combine a field componént & and a field com-
ponenth = —k, both of them with the same amplitudg
This is easily obtained in the laboratory, on a fraction of
wavelength along thez axis in a short-circuited triaxial
test fixture. This implementation is much simpler than the
creation of a cylindrical wave with = 0.

In order to obtain a standard excitation of type, locally
pure in the neighborhood ef = 0, we can for instance
combine a field componeiit = k£ and a field component

h = —k, both of them with their amplitudes of oppo-
site value. This is easily obtained in the laboratory, on a
fraction of wavelength along th@: axis in an open-cir-
cuited triaxial (or quadraxial) test fixture.

Obtaining locally a pure standard excitationgfs o is
easy, as we have previously seen. We can for instance
create an EM field having only & = 0 component with

all amplitude distributions equal to zero exceéptet d,
related by (35). This is easily (but approximately) ob-
tained in the laboratory provided is much smaller than
the wavelength, if the screen is installed on the axis of a
solenoid each turn of which would be separately excited
by a current source in phase with the others.

Forn > 1, we can for instance obtain a standard exci-
tation of typeiy 4, locally pure in the neighborhood of

z = 0, by combining a field component= % and a field
componenth, = —k, with equal amplitudes,, and v,
these amplitudes being related by (36). This is possible to
obtain in the laboratory on a fraction of wavelength along
the 0z axis in a test set made 8f, short-circuited tapes
connected to a symmetrical generator.

Forn > 1, we can for instance obtain a standard exci-
tation of typepr,,, locally pure in the neighborhood of

z = 0, by combining a field component= % and a field
componenh = —k, with opposite amplitudes,, andwv,,,
these amplitudes being related by (36). This is possible to
obtain in the laboratory on a fraction of wavelength along
the 0z axis in a test set made @h open-circuited tapes
connected to a symmetrical generator

Forn > 1, we need at least three different incidences to
obtain a standard excitation of typeco ,, locally pure in

the neighborhood of = 0. We will for instance combine

a field component. = 0, the amplitudes.,,, ¢,, b, and

d,, of which will be related by (35) and the additional
relation cancelling?,, with a field component = & and

a field component = —k, with opposite amplitudes,,
andv,,, these amplitudes being related by (36) and taking
on an appropriate value for cancellingzat= 0 the E.

part of the componerit = 0.
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Note 1: In practice, the locally pure standard excitations aedliptic coordinates, which are respectively equalt@and —F
only easily implemented in the laboratory for a genegiven by (40) forQ = —2neq x 1 VOIt.
alized screen sample with transverse dimensions muchH-rom (41) we can compute the complex field given by
smaller than the area where the excitation is locally dc
pure, which is itself necessarily much smaller than the E,—iF, = 7 (41)
wavelength, except fofy o . FOr jyo o though, it is z
also much easier to implement the pure standard exdihe result is
tation on a sample of electrically small cross section. Q 1

Note 2: Forn > 1 if we create a standard excitation of type E,—iEy, = 5 — A
jvon locally pure in the neighborhood of = 0, meo V(e +jy)? = (a? +87)
we note that as around = 0 we necessarily find  With (38) and (42), we easily establish that, on the external
the currents which have been introduced to remove theundary of the generalized screen, the surface charge density
charges brought by thg-o,, response. If the radiug s
if small compared to the wavelength, (7) and (18) show 0 1
that the current along, will only dominate the current

ps = -
alonge. on a distance of the order af /». We should 2mab (52 n v
therefore question the possibility of making useful lab- a* bt

oratory measurem_ents in this S|t.uat|.on. . The value of:; onthe boundary can be directly obtained from

Note 3: In atest setup with > 1 short-circuited or open-cir- -
. . o (40), and we find

cuited tapes meant to obtain standard excitations stan-

dard of typeiy 4, or of type ., locally pure in the ho = Va2 sin2t + b2 cos? t. (44)

neighborhood of = 0, the shape of the different tape

should be as close as possible to the equipotential surNote that the use of (4), withy = @ from (6), and (44), al-

faces of the transverse electrostatic problem for TEMws one to establish (43) without using the electric field normal

(42)

(43)

propagation. to the external boundary.
The problem of the elliptical cylinder being more complex
VIII. ELLIPTICAL CYLINDER AS EXTERNAL BOUNDARY than that of the circular cylinder, we will not try to compute all

, . . standard excitations. In fact, we will limit ourself to defining
Let's now study the case of a generalized screen with an €x-_ . . .
. L . ossible laboratory set-up for the creation of the standard exci-

ternal boundary having the shape of an elliptical cylinder. We

shall notea the semi-major axis antlthe semi-minor axis of ations of typedv.ao, pro, andjvoo, because they are always
. . ) . ; trivial.
the ellipse. For an appropriate choice of the orientatio®of

a parametric equation of the external boundary can be written — /A Standard excitation of typg;, o obviously corresponds
to the natural electrostatic charge distribution of the

{l’ = acost (38) charged generalized screen (assumed with a conducting
external boundary) in free space, for which we can
compute the equipotential surfaces. The metallization
of one of these surfaces with a good conductor, this
surface being chosen close enough from the screen for
the propagation to be limited to the TEM mode at the

y=bsint

Itis well known (see [9, p. 242]) that if the elliptical cylinder
is charged with a per-unit-length char@eand alone in space,
his complex potential is given by

— T+ iy frequencies of interest, is a natural way of constructing
(= oo arccosh <7m) : (39) a test setup for producing type. o, standard excitation.

The standard excitation will be locally pure provided the
In a plane orthogonal to the axis, the rectangular coordinates instrument is used open-circuited, as in the case of the
of a point can be deduced from the values of the potential and  circular cylinder.

stream functions — A standard excitation of typéy 4o corresponds to the
27e0 e natural distribution of surface currents on the general-
x = v/a?+? cosh 0 Vcos 2] F ized screen (the external boundary of which is assumed
oreo oreo (40) perfectly conducting) when the instrument defined for
y = —va? + b?sinh o Vsin 0 F the production of standard excitation of typggis used

short-circuited. This is because, for the TEM propagation

The equipotential lines and field lines can be directly obtained  mode in a lossless wave-guide, the transverse current dis-
from these two formulas. They are respectively confocal ellipses  tribution is equal to the charge distributions multiplied by
and hyperboles. a constant (see [11, p. 248]).

From Section VI and the comparison of (38) and (40), we — A standard excitation of typg,-c o is easily obtained in
can see that on the screen external boundary, we can take the laboratory provided the cross-section of the general-
u? = t. More generally, in the volume outside the generalized  ized screen is much smaller than the wavelength, if the
screen and the external boundary we can take the coordinates screen is installed on the axis of a solenoid each turn of
(ul, w2, ) simply equal to¢y, &, 2) where; andé, are the which would be separately excited by a current source



424 IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 42, NO. 4, NOVEMBER 2000

in phase with the others, as with the circular cylindricah the volume outside the screen. Specifically, on the external

shield. boundary of the screen, we ha¥e= 0, and (47) gives
IX. RECTANGULAR CYLINDER AS EXTERNAL BOUNDARY = —@ arg(X +14). (50)
TEQ

This paragraph will discuss the case of a generalized screen
for which the external boundary is a cylinder of rectangular Using (27) and choosing® = F + = for Q = 2reo we get
cross-section. We shall noteand’ respectively the larger and
the smaller dimensions of the rectangle. The equation of the rec- u? =7 — 2arctan <—>
tangle shall be

(51)

0 a on the external boundary of the screen, with a cukKat= 0.
y=0ory=—-b forxze [—5, 5} Note that forX > 0 we have
. (45)
T = —g orr = g fory € [0, 0] u? = 2arctan X (52)

We shall use the known complex potential of a thin wire an the external boundary o_f the screen. _The formula_s (47) and
X = 0Y = 1, carrying a per-unit-length chargg, installed (51) allow to compute effectively the p05|.t|on of any pointonthe
above an infinite ground plarié = 0 (see [12, p. 209]) external boundary of the screen for a givehcoordinate, and

afterwards to extend this definition af to the volume outside
Q X 4+4i(Y +1) the screen. This is what we have done on Fig. 3 in the case
<X Ti(Y — 1)) y (46) - 2b, after plotting the external boundary (curi/fe= 0), we
plotted somes? = constant curves. The latter were computed

We now transform this problem into the problem of the peby integration of (47) along the field lines derived from

fectly conducting external boundary of the rectangular cylinder

o 27T€0

charged in free space, with an appropriate Schwarz—Christoffel X 4+iy = ieXp(V + 'f[” —w+1 (53)
transform (see [9, p. 31) exp(V +i[r —u?]) — 1
. A pXHY \/(hQ ) (1 k) with %2 constant and” as variable, taking on the value 0 on the
Tty = - / CESNE dt (47) external boundary of the screen.
0 This investigation shows that the coordinatecan be easily
whereh andk are defined as the solutions of defined for an external boundary having angles, without having
to resort to numerical methods for a two-dimensional problem.
[ /k V(2 — h2) (1 — k2¢2) It also shows that even in this casé, is continuous.
/h (12 4+ 1)2 dt As in the case of the elliptical cylinder, we can establish
o h JIE =) (1= 8 without additional computa_ltion the definition of a pos_sible lab-
== dt oratory setup for the creation of the standard excitations of the
@ Jo (2 +1)? (48) typesiy 4 o, Of typepy, o, and of typejyo o. The definition is ex-
oo \/(tQ — R (K22 — 1) " actly identical to _that prgsented for elliptical_ cylinder, only the
/1/k (2 +1)? shape of the equipotential surfaces being different.
_ /h V- A k) X. CONCLUSION
. 0 (2 +1)2 We have presented in this paper the first part of a theory of the
and A by screening properties of cylindrical generalized shields. We have
only defined a classification of the responses and excitations in
A— b (49) the presence of sources in the volume outside the generalized
1/k \/(t2 — h?) (1 - k2t2) ) screen. This classification is based on the definitions and basic
/h (2 +1)2 ¢ properties of the standard response and standard excitations, in
curvilinear coordinates.
This conformal mapping transforms the real aKkis= 0 into It should be noticed that this theoretical presentation is not

the rectangle defined by (45), the open half-plane 0intothe limited in the frequency domain. Even though it extensively uses

surface outside this rectangle, and the pdint 0, Y = 1into the property of cylindrical shields with a perfectly conducting

infinity. Let us note that the real pa¥t of the complex potential external boundary, this theory is applicable to any cylindrical

vanishes on the external boundary of the screen. screen, at any frequency. It is therefore of interest for the study
Equation (51) and (52) can be solved numerically without dibf screened cables, shielded conduits, and other long conducting

ficulty. The formulas (46) and (47) then become simple and eftructures like fuselages.

fective means for computing the complex potential at any point Establishing the standard responses on a given screen was

- shown to be equivalent to finding:é coordinate meeting some

3The formulas [9, (365), (366), and (367)] should be modified, because one . .

cannot arbitrarily assumie = 1 for the computation of the potential external requirements. We have shown on three different examples how

to a rectangular cylindrical boundary. this coordinate could be computed with analytical functions.
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Fig. 3. TheV = 0 external boundary and somé = constant surfaces in the volume outside the rectangular cylinder (only one half of the cylinder is shown).

In the case of an external boundary of revolution we couktandard responses caused by the most general external field
define test set-up for locally producing any pure standard exdistribution.

tation. This work could be done for boundaries leading to other

separable coordinates.

We note that for an arbitrary shape of the external boundary of
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