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The Basis of a Theory for the Shielding by Cylindric
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Abstract—Two new concepts applicable to cylindrical general-
ized screens are introduced: standard responses and standard ex
citations. The standard responses allow the description of any cur-
rent and charge distribution on the screen. For a given generalized
screen’s cross-section, they can be derived from the complex poten
tial of a simple electrostatic problem. The standard excitations are
electromagnetic (EM) field configurations suitable for a descrip-
tion of fields created by sources external to the screen. All stan-
dard excitations are explicitely computed in the case of a circular
cylindrical shield. We present only three standard excitations for
the case of the elliptical cylinder, and for the case of a rectangular
cylinder.

Index Terms—Cables, electromagnetic (EM) coupling, shielded
multiconductor cable, shielding, standard excitation, standard re-
sponse.

I. INTRODUCTION

WE HAVE previously presented [1] the first results of a
analysis of shielded multiconductor cables with respe

to their shielding performances. This early work introduced t
concept of five types of coupling between an external elect
magnetic (EM) field and the cable. Our paper stated that the
of “type of coupling” considered was not complete, because
infinite series of type of coupling was necessary to describe
effect of charges on the screen. We later decided [2] to refe
the five types of coupling defined initially, as the fivemaintypes
of coupling, because webelievedthey indeed gave an acceptab
picture of the behavior of most cables in many circumstanc
However we were not able at that time to give a complete list
the coupling types and their associated parameters.

After our first article on this subject, we wrote several pape
that improved our analysis, and also presented new experime
methods and results: a “parallel H-field probe” was design
and manufactured for the measurement of the parallel tran
impedance [2], [3], and an “axial H-field probe” was built for th
measurement of the axial transfer impedance [4], [5]. Interest
experimental results were also obtained with a rectangular T
cell [1] and later with a GTEM cell [5].

Extensions of this work led us to a theory of the shielding p
formances of nonideal cylindrical shields. The present pape
focused on two basic concepts of this theory, applicable to g
eralized screens: standard responses and standard excita
These concepts are somewhat general because they allow a
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description of the behavior of a shield, that can be implemen
without restriction as follows:

— on the nature of the excitation, any field structure bein
taken into account;

— on the shape of the shield, which is a cylinder of arbitra
cross section;

— on what is inside the shield.
In this paper, a shield or screen denotes a structure of cond

tive material (electric or magnetic conductor) intended to redu
the penetration of EM fields into an assigned region. This stru
ture is often very complex, for instance in the case of a braid
of a metallic tape wound around a multiconductor bundle. Th
is why we will often refer to a generalized screen containing t
real screen.

A generalized screen or generalized shield (see [6], or [7, S
tion 10.2]) is defined as any combination of screens (made
electric conductor or magnetic conductor) and exclusion vo
umes, providing EM attenuation. Exclusion volumes are defin
as volumes which may not contain field sources or conducto
potentially responsible for harmful coupling in the problem o
interest. In practical computations, exclusion volumes are co
sidered empty. In this paper the generalized screen will alwa
be a closed and connected set, and its boundary will be the un
of a cylindrical internal boundary and of a cylindrical externa
boundary, having no point in common, the latter surroundin
the former. The internal boundary of the generalized shield s
rounds a connected open set, later on referred to as the “volu
inside the generalized screen.” The points of space not includ
in the volume inside the external boundary, are said to be in
“volume outside the generalized screen,” considered an op
set. Thus, the volume inside the generalized screen, the volu
of the generalized screen, and the volume outside the gene
ized screen cover all space and any two of them have an em
intersection.

II. CHARGES ANDCURRENTS ON THEGENERALIZED SCREEN

Throughout the paper, is a right-handed
basis of orthogonal unit vectors. An originbeing chosen, the
(rectangular) coordinates with respect toare and , and
the generalized screen’s external boundary will be a cylinder
oriented along the axis (see Fig. 1). The intersection
of this cylinder and a plane of equation in , is not nec-
essarily circular, but it is a closed continuous curve. At any po
on , we define a local right-handed basis of or-
thogonal unit vectors: the unit-vector is everywhere normal
to and pointing outward, and the unit-vectoris tangent to
0.00 © 2000 IEEE
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Fig. 1. Our choice of curvilinear coordinates.
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the surface and perpendicular toand . The curvilinear co-
ordinate on every curves is chosen in such a way tha
it is dimensionless, that it is a bijective mapping from
to , and that the constant curves on are straight
lines parallel to . is therefore a system of orthogona
curvilinear coordinate on the cylinder . One can extend the
definition of the coordinate to , so that the map that asso
ciates a coordinate to the corresponding point on be-
comes a periodic function of period .

We can obviously derive curvilinear coordinates
for the entire space, by properly choosing a family of cylinde

, one cylinder of the family being the external bounda
of the generalized screen and another matching the

ternal boundary of the generalized screen, each cylind
of the family having at any point a local right-handed bas

of orthogonal unit vectors and a system of coo
dinate built as above, and subject to the condition th
the infinitesimal line element is

(1)

One can see that and are not dependent on. Also, the
external and internal boundaries of the generalized screen b
cylinders of the family, they can respectively be described
the equations and . The Fig. 1 illustrates
our choice of coordinates, and shows a pointof curvilinear
coordinates . One can build an infinity of dif-
ferent such curvilinear coordinate systems (for instance us
problems of electrostatics for which constant surfaces are
equipotentials).

In the first half of the following discussion, up to (15), w
shall only consider time-domain quantities.

If the generalized shield has a perfectly conducting exter
boundary, charges can only appear on this external bound
when all EM field sources are in the volume outside the gen
t
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alized shield. Otherwise, charges may appear on the generali
shield’s internal or external boundaries, and also inside the ge
eralized shield (we may for instance have defined the gener
ized shield of a cable as made of a copper braid and a polyvin
chloride jacket). The charge density, therefore, depends on the
three coordinates , and we shall regard it as a distribu-
tion. An integration of the charge densityon the generalized
shield thickness gives a quantity that has the same unit as a s
face charge. However, it will be more convenient to introduc
the “local per-unit-length charge density” (in C/m) that we will
denote , and define as

(2)

where the path of integration is a portion of a constant
and constant line.

In the case of a perfectly conducting boundary at
and if all EM field sources are in the volume outside the genera
ized screen, charges are only present as a surface charge de

on the external boundary, andis given by

(3)

where is the Dirac distribution. We therefore have in this spe
cial case:

(4)

Returning to the general case, we notice that, considered a
function of is periodic of period and can therefore be
expanded in a Fourier series

(5)
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where the coefficient is real, where for the coefficient
is complex, and where with .

It is important to notice that the total per-unit-length char
carried by the generalized screen is given by

(6)

If the generalized shield has a perfectly conducting bounda
a surface current results. Otherwise, such a surface current
not take place, but an integration of the current densityre-
garded here as a distribution, on the generalized shield th
ness (with respect to the variable) gives a quantity that has
the same unit as a surface current. However, it will be more c
venient to introduce the “local current vector” (in) that we will
denote , and define as

(7)

with

(8)

where the path of integration is a portion of a constant
and constant line.

In the case of a perfectly conducting boundary at
and if all EM field sources are in the volume outside the ge
eralized screen, there is a surface currenton the external
boundary, and is given by:

(9)

where is the Dirac distribution. We, therefore, have in th
particular case

(10)

In this case and if the shield is isolated, . This will
be approximately the case for good shield, isolated. Howev

should not be ignored for imperfect shields: the porpoisi
phenomenon (see [7, Section 9.4.6]) is precisely caused by s
currents.

Returning to the general case, let us expand the two last
ordinates of in a Fourier series in the following manner:

(11)

(12)
ge

ry,
can

ick-

on-

n-

is

er,
ng
uch

co-

where the coefficients and are real numbers, where
for the coefficients and are complex, and
where with .

We note that the total current flowing along the shield axis is

(13)

We know that for a vector of curvilinear coordinates
the value of the divergence is given by

(14)

The equality div for the conservation of
charges in time domain, once multiplied by and integrated
with respect to along a constant and constant path,
becomes

(15)

Assuming that the generalized shield is isolated, we have
at and , and suppressing a dependence,

we get in the frequency domain

(16)

where with . We note that used in (5),
(11) and (12) corresponds to an angular parameter on the ge
eralized screen, whereasused in (16) corresponds to a phase
parameter. Separately, they are the same complex number. Ho
ever, because we are going to use both of them in expressio
where they will have different meanings, it will be necessary to
consider those two numbers, and also the phases of the comp
quantities in equations where they appear, as having no relatio
ship. Mathematically, the numbersand are in fact real quater-
nions, not complex numbers. They can be regarded as compl
numbers only when: either only quaternions of the sub-
space are present in a formula, or only quaternions of the
subspace are present in a formula. Any quantity related towill
be called “angular,” and any quantity related towill be called
“frequential.”

Let us also note that the choice of the definitions in (2), (7)
and (8) was made for later convenience in (6), (13), and (16
This last expression can be easily expressed in the angu
Fourier domain. Replacing and in (16) with (5),
(11), and (12), then suppressing the dependence, we
obtain

(17)
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Fig. 2. A combination ofj per-unit-length current andi current.
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(18) being an expression in the field of real quaternions. In (1
each of the three quantities , , and has a mod-
ulus, an angular phase as it is used in (5) or (11) or (12), an
frequential phase, as it is used in (16). We note that the sec
term of (18) does not show up in (17).

The results (17) and (18) deserve some more comments
we know, it is experimentally possible on an electrically sho
length of generalized shield to have either negligible (this
is what is obtained in a short-circuited triaxial set-up for th
measurement of the per-unit-length transfer impedance o
coaxial cable). In this case (13) and (17) say that the con
vation of charges becomes a conservation of the longitud
current . For a current to flow on the generalized shield,
is therefore required that a return circuit exists, which provid
a suitable path for the return current. Equation (18) says th
return circuit is not required for : a per-unit-length
current may become the necessary return current for cur-
rents, as shown on Fig. 2 in the case , on an homogeneous
metallic shield of strange cross section.

On Fig. 2, we observe a situation where the only nonne
gible components of the local current flowing on the gen-
eralized screen, are and . The local current, which
only depends on and is shown orthogonally projected on
the generalized screen’s external boundary. The values of
angular phases of and along the axis, are such that
vortex-like current appear. Such eddy current may show-up
cause of the local application (by external sources) of a vary
magnetic field orthogonal to the axis. On Fig. 2, at points A
and C (lying in the same plane orthogonal to the axis, with
8),

d a
ond

. As
rt

e
f a

ser-
inal
it
es

at a

gli-

the

be-
ing

the

coordinate differing of about) the components dom-
inates. At points B and D the component dominates, and
between these two points of equal coordinate, the angular
phase difference of is about .

The treatment of the generalized shield’s behavior for
is therefore a global problem, that is to say a problem involvin
the entire shield and a return circuit, but the shield behaviormay
bea local problem for . A solution as presented on Fig. 2
for an homogeneous metallic shield is not always possible f
complying with (18) on a given generalized screen: we can f
instance think of a shield made of thin isolated wires parall
to the axis. In this case, per-unit-length current cannot
flow, and the establishment of currents is always a global
problem.

III. D EFINITION OF THE TYPES OFRESPONSE

The shield being passive, the charge and currents on the sh
may be regarded as a response to external stimuli. In this pa
graph, we shall define the vocabulary and give some basic pro
erties for a classification of charge and current distributions o
the generalized screen. This vocabulary is centered on the w
response.

Definition: Response. We shall call “response of the gene
alized screen,” or simply “response” the pair of the current di
tribution and the charge distribution on the generalized scree

Theorem 1: Let us denote the internal boundary by and
by the external boundary of the generalized screen.

i) There exists a definition of the coordinate
system in the volume of the generalized screen and
the boundaries and , such that:

— if over we place a thin perfect electric conducto
and charge it, a local per-unit-length charge densi



418 IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 42, NO. 4, NOVEMBER 2000

en-

e

fine
the

1),

ntial

c-
s
of

d to
re-

for

d
e-
ue.
x-

-
on

e

independent of the variables and would corre-
spond to the electrostatic equilibrium of this conduct
assumed the only object in space;

— if over and we place a thin perfect electric con
ductor, and obtain in this way the two electrodes of
capacitor filed with a medium of homogenous perm
tivity, the surfaces constant in the volume of the
generalized screen would be the equipotential surfa
when this capacitor is charged.

ii) Moreover, this definition of the coordinate in the
volume of the generalized screen and on the bounda

and is unique but for an arbitrary additive constan

Proof: Let us assume that we place a per-unit-leng
charge , constant along the generalized screen, on the m
allized external boundary , assumed alone in space. Th
surface being invariant by any translation along , the
surface charge density which appears on is also invariant
by such translations and does therefore not depend on. Let us
assume there exists a coordinateaccording to our wishes,
and let us call the length of the closed curve . Because
the local per-unit-length charge density is constant, it is
equal to and according to (6) we have

(19)

using (4), we get

(20)

If is an arc length on , the coordinate satisfies

(21)

This differential equation uniquely defines but for an arbi-
trary additive constant, which establishes the unicity on. The
unicity on the generalized screen and on the boundariesis a
direct consequence.

Let us now establish the existence of the coordinate syst
The constant coordinate surfaces can be build easily. The o
remaining problem is the mapping of the constant and

constant surfaces with . The per-unit-length charge,
being placed along the generalized screen, we see that if the
face charge density which appears on alone in space is
integrable, (21) can be used to compute. However being
defined as a derivative (derivative of a distribution) of the char
versus the coordinatesand , it is necessarily Lebesgue-inte
grable. Also, it is also physically obvious that is either ev-
erywhere positive or everywhere negative. We can therefore
tain from (21), and it will be monotonous. For a coordina
system built in this manner, according to (4) we have

(22)

and is a constant. Q.E.D.
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Note that we will show in Section VI that can often be
computed with a conformal mapping, being therefore con-
tinuous.

Theorem 2: Let a definition of the coordinate
system satisfy the hypothesis of the Theorem 1. The tang
tial component of the local current vector
and the local per-unit-length charge densityare defined in a
unique way (the proof is left to the reader).

Definition: Tangential response. Let a definition of the
coordinate system satisfy the hypothesis of th

Theorem 1. We calltangential responseof the generalized
screen the pair of the distribution of
the tangential component of the local current
vector, and of the local per-unit-length charge density.

Definition: Standard response. Let
be a tangential response of the generalized screen. We de
the standard responses of the generalized screen according
unique decomposition of the tangential response with (5), (1
and (12), in the following way:

i) a response of type is a
current;

ii) a response of type is a per-
unit-length charge;

iii) a response of type is a
per-unit-length current;

iv) , a response of type is a
current;

v) , a response of type is a
per-unit-length charge;

vi) , a response of type is a
per-unit-length current.

Any standard response can also be regarded as a tange
response: ,

— a response of type is the tangential response
;

— a response of type is the tangential response
;

— a response of type is a tangential response
.

It shall be noted that this classification does not take into a
count possible currents. However, their mere existence i
not denied nor neglected: they are only not described. This is
no consequence, because such current will usually be relate
a response of one of the types defined above. As mentioned p
viously, the porpoising phenomenon on braided shields has
example been proved to be related to a response of type.

Theorem 3: Any tangential response of a given generalize
screen, can be written in the form of a sum of standard r
sponses, each of a different type, and this expression is uniq

Proof: This theorem is simply the consequence of the e
istence and unicity of the construction of and , and of the
Fourier series used in (5), (11) and (12).

Definition: Canonical decomposition. The unique expres
sion defined in Theorem 3 is called the canonical decompositi
of the tangential response.

Definition: Pure tangential response. At a given point, the
tangential response is said “locally pure” if there is only on
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nonvanishing term in the canonical decomposition at this po
The tangential response is said “pure along the screen” if th
is only one nonvanishing term in the canonical decomposi
along the screen: in this case the tangential response of the e
screen is a single standard response.

Submitted to a given EM environment, the generalized sh
will generally have a canonical decomposition containing
superposition of several standard responses. However, a
point we do not know if it is possible to create a pure respo
of a given type on a given shield, either locally or along t
screen. Answering this question in detail is the purpose of
next paragraph.

IV. I NDEPENDENTSTANDARD RESPONSES

Definition: For a given generalized screen and for ,
a -tuple of standard responses is said physically indepen
if and only if, for any -tuple of real quaternions, we can d
sign a physically achievable experiment, in which the canon
decomposition of the tangential response along the screen
contain each of the standard responses multiplied by the qu
nion of same index.

We note that this definition makes use of the trivial structu
of vector space on the set of standard responses, regard
tangential responses. Because of the orthogonality of the e
nential functions in (5), (11) and (12), any-tuple of standard
responses of different types is linearly independent. Therefo
-tuple of standard responses is linearly independent if and

if all standard response it contains are of different types.
Also, the physical independence of a-tuple of standard re-

sponses implies the linear independence of the-tuple. However
the converse is obviously false, because the laws of physicsand
the structure of the generalized screenimpose additional rela-
tions.

Theorem 4: A standard response of type and a stan-
dard response of type are not physically independent, b
cause they are related by (17), which implies that if the stand
response of type is known along the generalized scree
there is only one possible standard response of type.

Theorem 4 means that the standard responses of type
need not be taken into account if one intends to build the se
the physically achievable tangential responses along a gen
ized screen. The introduction of a standard response of type
in the theory nevertheless addresses the need for a local de
tion of the tangential response.

Theorem 5: , a standard response of type , a
standard response of type and a standard response of ty

are not physically independent, because they are relate
(18), which implies that if the standard responses of type
and are known along the generalized screen, there is o
one possible standard response of type .

Thus, for , the standard responses of type cannot
exist independently of the other types of standard respo
along the generalized screen. According to (18), the cha
which appears because of a standard responses of type
and which are not removed by a longitudinal variation of
current of suitable amplitude, cause a per-unit-length cha
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We may also state that for , the standard responses o
type need not be taken into account of one intends to bu
the set of the physically achievable tangential responses alo
the generalized screen. The introduction of a standard respo
of type in the theory is however necessary for a loca
description of the tangential response.

Theorem 6: If the external boundary of a generalized scree
is a perfect electric conductor, for , any -tuple of
standard responses which do not include any standard respo
of type , nor any standard response of type for any

, this -tuple containing a maximum of one standard re
sponse of each type, is physically independent.

Proof: Let us first place the generalized screen in vacuum
The external boundary being a perfect electric conductor,
have . We will only use a source in the volume outside
the generalized screen. Therefore the only possible currents
be surface current on the external boundary. In this case (17)
(18) are equivalent to the conservation of charge.

From any linear combination of the standard responses
meeting the hypothesis of Theorem 6, we can obviously cre
a new tangential response by adding standard responses of

and of type , in such a manner that (17) and (18
are satisfied. Let us call this tangential response the modif
response. From the point of view of electromagnetism it
possible to move, with nonEM forces, the free charges of t
conducting external boundary, in order to obtain the modifie
response on the generalized screen. These nonEM forces
usually taken into account with an electromotive force.
Because we are only interested in surface current, we c
postulate that is tangential to generalized screen’s extern
boundary. If the screen was a medium of finite conductivi

, and if a total electric field was present, the effect of the
nonEM force would be described by the equation

(23)

In the perfectly conducting medium of interest here, we ca
only state that has a vanishing tangential componen
which can be written, if we note the unit vector normal to the
generalized screen pointing outward

(24)

being the electric field at the surface of the generalized scre
The use of nonelectromagnetic forces acting on the gene

ized screen can now be suppressed if we observe that their p
pose is to compensate the force due to the tangential compon
of the electric field caused by the response. In other word, the
nonelectromagnetic forces were used to create a discontinu
of the tangential component of the electric field across the e
ternal boundary of the generalized screen. We know (cf. [8,
34]) that the same effect can be obtained with a surface den
of magnetic current placed on top of the generalized screen
taking on the value

(25)
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This surface density of magnetic current therefore allows
creation of the wanted modified response. One can show
this layer of magnetic surface current is equivalent to a dou
layer of electric surface current. It is clear that one could, w
small enough conductors and generators, create a device
proximating the double layer of surface current. This is w
was meant by “a physically achievable experiment.”

Theorem 7: If the external boundary of a generalized scre
is a perfect electric conductor

i) it is always possible to create a field configuration (i.
field values as a function of space coordinates) that w
produce a locally pure standard response of any gi
type;

ii) and possibilities of creating pure standard respon
along the screen are only limited by the Theorems 4
(the proof is left to the reader).

V. DEFINITIONS OF THETYPES OFEXCITATION

Definition: Standard excitation. For a given generaliz
screen, we define a standard excitation at a point, an EM
field configuration produced by sources in the volume outs
the generalized screen, which would produce, if the exte
boundary was perfectly conducting, a locally pure sta
dard response at. The type of the standard excitation is b
definition the type of this standard response.

We note that this definition is valid because we first esta
lished Theorem 7. It introduces standard excitations of t

, of type and of type . It should be emphasize
that many different EM field configurations are likely to produ
the same standard excitation at a point. There is therefore no
uniqueness to be expected here.

A conjecture is that any EM environment (i.e., any appli
EM field configuration in the volume outside the generaliz
shield) of a given generalized screen, can be written in the f
of a sum of standard excitations at a point, each of a different
type. If true, this statement seems difficult to prove. We sh
demonstrate it in Section VII, in the case of generalized sh
of circular cross section.

VI. CALCULATION OF THE STANDARD RESPONSES AND

EXCITATIONS

This paragraph will introduce the basics of a method for
computation of the standard responses and excitations.
method will be implemented in the Sections VII–IX, in thre
situations of increasing complexity for the shape of the exter
boundary: the cylinder of revolution, the elliptical cylinder, an
the rectangular cylinder.

In fact, this paragraph focuses on the main difficulty: defini
a coordinate on the external boundary, according to the h
pothesis of Theorem 1. This being a two-dimensional poten
distribution problem, it will be treated with analytic function
In order to solve the problem of a charged conducting exte
boundary, only object in space, we shall consider a complex
tential which is an analytical function. The real partof will
the
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be the electric potential, and we shall notethe opposite of the
imaginary part of , usually referred to as the stream function

We know (see [9, p. 236]) that the lines constant are
field lines, and that the flux of the electric field (per unit lengt
in the direction ) between the field lines and

is simply . Specifically, on the conducting externa
boundary , the charge surface density takes on the value

(26)

In the case of interest, we assume that the local per-un
length charge density is constant for the charge distribution
of electrostatic equilibrium. According to (20), we may write

(27)

where is the charge on the generalized screen, per unit len
along . We can see that if the complex potentialis produced
by the per-unit-length charge Volt, is defined
by Volt, to which might be added any constant.

Once a complex potential is computed,is therefore known.
The standard responses are then also known, because the
explicitely defined by (5), (11), and (12).

VII. CYLINDER OF REVOLUTION AS EXTERNAL BOUNDARY

A. Standard Responses and Standard Excitations on the
Circular Cylindrical Generalized Screen

Let us first closely examine the case of a generalized scre
having an external boundary being a cylinder of revolution.
this external boundary was conducting, charged, and alone
space, it is well known (see [9, p. 241]) that a possible compl
potential for the per-unit-length chargeon the cylinder would
be given1 by

(28)

so that we would obviously have

(29)

Thus, according to Section VI, we can choose , being
the argument of the complex variable, and take the coordin

equal to the circular cylinder coordinate ,
for which and . Because this separable coordi
nates are convenient for calculation, let us try to compute t
standard excitations.

Let us therefore consider a (generalized) screen placed
vacuum, with a perfectly conducting circular cylindrical ex
ternal boundary of radius . In the volume outside the screen

1In order not to confuse the reader, we shall not usez (already utilized) but
x + iy for the complex variable.
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suppressing a dependency, we may write the free-spa
(see [10, pp. 355–361], [8, pp. 198–204]2 ), fields in circular
cylindrical coordinates as

(30)
where

the integer and the real
propagation “constant”

are separation “constants;”

and are ( dependent) amplitude dis
tributions, expressed in Vm;

and are ( dependent) amplitude dis
tributions, expressed in Am;
is the free-space wave
impedance;
is the wave number ;

and where the functions and are defined by the equation
stemming from the separation of variables. In the case wh

, this is a Bessel differential equation and we obtain

(31)

which are functions depending onand where and are
Hankel functions with a frequential phase. In the case ,

2Both Stratton ([10, chap. VI, Sec. 6.6, (28) and (29)]) and Harrington (
chap. 5, Section 5-1, (5-13) and (5-14)]) use the same complex number fo
angular phase and the frequential phase. This is erroneous because, for ins
a rotation of�=2n is not equivalent to a time translation of�=2!. The appro-
priate expressions are (30), (31) and (32).
ce
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there is no Bessel equation, and the differential equation lead
us to

for

for

for

for

(32)

For , we note that the functions are cylindrical
waves propagating toward the axis, and that the functions

are cylindrical waves propagating from theaxis, so that
only the fields components related to the functions can be
caused by the current and charges on the screen.

Because there are angular phase and frequential phase dep
dencies, we note that the amplitude distributions , and

, as well as the field amplitude , , and
are Hamilton’s quaternions.

For we can check that and are not associated
with any field component. For and the EM fields
depend only on the variables and defined by

(33)

where is the Dirac distribution. The variables and there-
fore have the dimension of Vm. In this case we in fact have a
TEM wave propagating along the shield axis, and the only no
vanishing field components are and given by

(34)
We can observe that we only considered the values ofgiving

rise to periodic solutions along the screen axis, which corre
spond to real, included in the interval , whence our
integration path in (30).

The boundary conditions on the (perfect) shield’s externa
boundary is at .

For , the boundary condition is equivalent to

(35)

so that, the variable not withstanding, the fields depend on two
arbitrary amplitudes.

For , the boundary condition is equivalent to

(36)

so that taking (33) into account, the sign of not with-
standing, the fields depend only one arbitrary amplitude.
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For any field configuration, from (8) and boundary conditio
on the external boundary, we find

(37)

At this stage, we can see that the components ofof index
correspond to standard excitations of type , that the com-

ponents of of index correspond to standard excitations
type , and that the components of of index corre-
spond to standard excitations of type .

B. Simple Combinations of Standard Excitations on the
Circular Cylindrical Generalized Screen

It is now possible to establish the complete list of the fre
space field configurations which lead to the simplest com
nations of standard excitations, allowed by Theorems 4 an
along any generalized screen with a circular cylindrical exter
boundary.

— A standard excitation of type , only combined with a
standard excitation of type as prescribed by Theorem
4 can be created along the generalized screen: either
an EM field including only components with all
amplitude distributions equal to zero except, or with
an EM field including only components with
all amplitude distributions equal to zero exceptand
related by (35). We note that in the special case ,
the canonical decomposition only contains the stand
excitation of type .

— A pure standard excitation of type can be created
along the generalized screen, with an EM field includi
only components with all amplitude distribution
equal to zero except and related by (35).

— For , a standard excitation of type , only com-
bined with a standard excitation of type as prescribed
by Theorem 5 can be created along the generalized scr
either with an EM field including only compo-
nents with the amplitude distributions and related
by (36), or with an EM field including only com-
ponents with all amplitude distributions equal to zero e
cept and related by (35).

— For , a standard excitation of type , only com-
bined with a standard excitation of type as prescribed
by Theorem 5 can be created along the generalized scr
with an EM field including only components with
the amplitude distributions , , and related by
(35) and the additional relation cancelling .

— For , a standard excitation of type , only
combined with a standard excitation of type as pre-
scribed by Theorem 5 can be created along the genera
screen, with an EM field including only compo-
nents with the amplitude distributions , and
related by (35) and the additional relation cancelling,
this being in general only possible for .
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C. Locally Pure Excitations on the Circular Cylindrical
Generalized Screen

We now understand that, with an appropriate choice of inc
dence, or by taking advantage of interference, it is possible
locally create a field configuration where only one standard ex
citation dominates. Thus:

— In order to obtain a standard excitation of type lo-
cally pure in the neighborhood of , we can for in-
stance combine a field component and a field com-
ponent , both of them with the same amplitude.
This is easily obtained in the laboratory, on a fraction o
wavelength along the axis in a short-circuited triaxial
test fixture. This implementation is much simpler than the
creation of a cylindrical wave with .

— In order to obtain a standard excitation of type locally
pure in the neighborhood of , we can for instance
combine a field component and a field component

, both of them with their amplitudes of oppo-
site value. This is easily obtained in the laboratory, on
fraction of wavelength along the axis in an open-cir-
cuited triaxial (or quadraxial) test fixture.

— Obtaining locally a pure standard excitation of is
easy, as we have previously seen. We can for instan
create an EM field having only a component with
all amplitude distributions equal to zero exceptet
related by (35). This is easily (but approximately) ob-
tained in the laboratory provided is much smaller than
the wavelength, if the screen is installed on the axis of
solenoïd each turn of which would be separately excite
by a current source in phase with the others.

— For , we can for instance obtain a standard exci
tation of type locally pure in the neighborhood of

, by combining a field component and a field
component , with equal amplitudes and ,
these amplitudes being related by (36). This is possible
obtain in the laboratory on a fraction of wavelength along
the axis in a test set made of short-circuited tapes
connected to a symmetrical generator.

— For , we can for instance obtain a standard exci
tation of type locally pure in the neighborhood of

, by combining a field component and a field
component , with opposite amplitudes and ,
these amplitudes being related by (36). This is possible
obtain in the laboratory on a fraction of wavelength along
the axis in a test set made of open-circuited tapes
connected to a symmetrical generator

— For , we need at least three different incidences to
obtain a standard excitation of type locally pure in
the neighborhood of . We will for instance combine
a field component , the amplitudes , and

of which will be related by (35) and the additional
relation cancelling , with a field component and
a field component , with opposite amplitudes
and , these amplitudes being related by (36) and takin
on an appropriate value for cancelling at the
part of the component .
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Note 1: In practice, the locally pure standard excitations
only easily implemented in the laboratory for a gene
alized screen sample with transverse dimensions m
smaller than the area where the excitation is loca
pure, which is itself necessarily much smaller than t
wavelength, except for . For though, it is
also much easier to implement the pure standard e
tation on a sample of electrically small cross section

Note 2: For if we create a standard excitation of typ
locally pure in the neighborhood of ,

we note that as around we necessarily find
the currents which have been introduced to remove
charges brought by the response. If the radius
if small compared to the wavelength, (7) and (18) sh
that the current along will only dominate the current
along on a distance of the order of . We should
therefore question the possibility of making useful la
oratory measurements in this situation.

Note 3: In a test setup with short-circuited or open-cir-
cuited tapes meant to obtain standard excitations s
dard of type or of type locally pure in the
neighborhood of , the shape of the different tap
should be as close as possible to the equipotential
faces of the transverse electrostatic problem for TE
propagation.

VIII. E LLIPTICAL CYLINDER AS EXTERNAL BOUNDARY

Let’s now study the case of a generalized screen with an
ternal boundary having the shape of an elliptical cylinder. W
shall note the semi-major axis and the semi-minor axis of
the ellipse. For an appropriate choice of the orientation of,
a parametric equation of the external boundary can be writt

(38)

It is well known (see [9, p. 242]) that if the elliptical cylinde
is charged with a per-unit-length chargeand alone in space
his complex potential is given by

(39)

In a plane orthogonal to the axis, the rectangular coordina
of a point can be deduced from the values of the potential
stream functions

(40)

The equipotential lines and field lines can be directly obtain
from these two formulas. They are respectively confocal ellip
and hyperboles.

From Section VI and the comparison of (38) and (40),
can see that on the screen external boundary, we can

. More generally, in the volume outside the generaliz
screen and the external boundary we can take the coordin

simply equal to where and are the
are
r-

uch
lly
he

xci-
.
e

the

ow

b-

tan-

e
sur-
M

ex-
e

en

r
,

tes
and

ed
ses

we
take
ed
ates

elliptic coordinates, which are respectively equal toand
given by (40) for Volt.

From (41) we can compute the complex field given by

(41)

The result is

(42)

With (38) and (42), we easily establish that, on the extern
boundary of the generalized screen, the surface charge den
is

(43)

The value of on the boundary can be directly obtained from
(40), and we find

(44)

Note that the use of (4), with from (6), and (44), al-
lows one to establish (43) without using the electric field norma
to the external boundary.

The problem of the elliptical cylinder being more complex
than that of the circular cylinder, we will not try to compute al
standard excitations. In fact, we will limit ourself to defining
possible laboratory set-up for the creation of the standard ex
tations of types , , and , because they are always
trivial.

— A standard excitation of type obviously corresponds
to the natural electrostatic charge distribution of th
charged generalized screen (assumed with a conduct
external boundary) in free space, for which we ca
compute the equipotential surfaces. The metallizatio
of one of these surfaces with a good conductor, th
surface being chosen close enough from the screen
the propagation to be limited to the TEM mode at the
frequencies of interest, is a natural way of constructin
a test setup for producing type standard excitation.
The standard excitation will be locally pure provided the
instrument is used open-circuited, as in the case of th
circular cylinder.

— A standard excitation of type corresponds to the
natural distribution of surface currents on the genera
ized screen (the external boundary of which is assume
perfectly conducting) when the instrument defined fo
the production of standard excitation of type is used
short-circuited. This is because, for the TEM propagatio
mode in a lossless wave-guide, the transverse current d
tribution is equal to the charge distributions multiplied by
a constant (see [11, p. 248]).

— A standard excitation of type is easily obtained in
the laboratory provided the cross-section of the genera
ized screen is much smaller than the wavelength, if th
screen is installed on the axis of a solenoïd each turn
which would be separately excited by a current sourc
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in phase with the others, as with the circular cylindric
shield.

IX. RECTANGULAR CYLINDER AS EXTERNAL BOUNDARY

This paragraph will discuss the case of a generalized sc
for which the external boundary is a cylinder of rectangu
cross-section. We shall noteand respectively the larger and
the smaller dimensions of the rectangle. The equation of the
tangle shall be

or for

or for
(45)

We shall use the known complex potential of a thin wire
, carrying a per-unit-length charge, installed

above an infinite ground plane (see [12, p. 209])

(46)

We now transform this problem into the problem of the p
fectly conducting external boundary of the rectangular cylin
charged in free space, with an appropriate Schwarz–Christo
transform (see [9, p. 314]3 )

(47)

where and are defined as the solutions of

(48)

and by

(49)

This conformal mapping transforms the real axis into
the rectangle defined by (45), the open half-plane into the
surface outside this rectangle, and the point , into
infinity. Let us note that the real part of the complex potential
vanishes on the external boundary of the screen.

Equation (51) and (52) can be solved numerically without d
ficulty. The formulas (46) and (47) then become simple and
fective means for computing the complex potential at any po

3The formulas [9, (365), (366), and (367)] should be modified, because
cannot arbitrarily assumeh = 1 for the computation of the potential externa
to a rectangular cylindrical boundary.
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in the volume outside the screen. Specifically, on the extern
boundary of the screen, we have , and (47) gives

(50)

Using (27) and choosing for we get

(51)

on the external boundary of the screen, with a cut at .
Note that for we have

(52)

on the external boundary of the screen. The formulas (47) a
(51) allow to compute effectively the position of any point on th
external boundary of the screen for a givencoordinate, and
afterwards to extend this definition of to the volume outside
the screen. This is what we have done on Fig. 3 in the ca

, after plotting the external boundary (curve ), we
plotted some constant curves. The latter were compute
by integration of (47) along the field lines derived from

(53)

with constant and as variable, taking on the value 0 on th
external boundary of the screen.

This investigation shows that the coordinatecan be easily
defined for an external boundary having angles, without havi
to resort to numerical methods for a two-dimensional proble
It also shows that even in this case,is continuous.

As in the case of the elliptical cylinder, we can establis
without additional computation the definition of a possible lab
oratory setup for the creation of the standard excitations of t
types , of type , and of type . The definition is ex-
actly identical to that presented for elliptical cylinder, only th
shape of the equipotential surfaces being different.

X. CONCLUSION

We have presented in this paper the first part of a theory of t
screening properties of cylindrical generalized shields. We ha
only defined a classification of the responses and excitations
the presence of sources in the volume outside the generali
screen. This classification is based on the definitions and ba
properties of the standard response and standard excitation
curvilinear coordinates.

It should be noticed that this theoretical presentation is n
limited in the frequency domain. Even though it extensively us
the property of cylindrical shields with a perfectly conductin
external boundary, this theory is applicable to any cylindric
screen, at any frequency. It is therefore of interest for the stu
of screened cables, shielded conduits, and other long conduc
structures like fuselages.

Establishing the standard responses on a given screen
shown to be equivalent to finding a coordinate meeting some
requirements. We have shown on three different examples h
this coordinate could be computed with analytical functions.
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Fig. 3. TheV = 0 external boundary and someu = constant surfaces in the volume outside the rectangular cylinder (only one half of the cylinder is sho
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In the case of an external boundary of revolution we co
define test set-up for locally producing any pure standard e
tation. This work could be done for boundaries leading to ot
separable coordinates.

We note that for an arbitrary shape of the external boundar
the generalized screen, generating locally pure standard ex
tions of the types , of type , and of type is always
trivial. However in general, it will not be possible to determin
analytically the possible sources for other pure standard exc
tions, as we have done for the circular cylinder. For this proble
the analytical results can probably not be obtained much fur
than formula (25), which in practice requires the computat
of the electric field produced by the standard response.

In the case of a perfectly conducting (electric) extern
boundary, the present paper also discussed the combinatio
uld
xci-
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y of
cita-

e
ita-
m,

ther
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standard responses caused by the most general external f
distribution.
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