

Per-Unit-Length Inductance Matrix Computations Using Modified Partial Inductances

Frédéric Broydé, Evelyne Clavelier, Ronald De Smedt and Lucie Broydé
\square Introduction
\square Partial inductance revisited
\square Modified partial inductance
\square Computation of p.u.l. inductance matrices
\square Asymptotic expansions for a broad ground plane
\square Conclusion

1. Introduction

\square We consider a uniform multiconductor interconnection having $n \mathrm{TCs}$ and a GC.
\square A parameter of the MTL model is \mathbf{Z}^{\prime}. For $f<f_{o}$ we have

$$
\begin{equation*}
\mathbf{Z}^{\prime} \approx \mathbf{R}_{D C}^{\prime}+2 \pi f \mathbf{L}_{D C}^{\prime} \tag{1}
\end{equation*}
$$

\square This paper is about a new approach for

2. Partial inductance revisited

\square Assuming the conservation of current in each loop,

- I_{α} is the current in the loop α and I_{β} is the current in the loop β;
- $\mathbf{B}_{L \alpha}$ and $\mathbf{H}_{L \alpha}$ are the fields produced anywhere in space by I_{α}.
\square We define the self-inductances and the mutual inductances using

$$
\begin{equation*}
L_{D C \alpha \beta} I_{\alpha} I_{\beta}=\iiint_{V} \mathbf{B}_{L \alpha} \cdot \mathbf{H}_{L \beta} d v \tag{2}
\end{equation*}
$$

\square If we consider the branches $1, \ldots, N$ forming the loops, let us use:
$-i_{\alpha}$ to denote the current in the branch α;
$-\mathbf{B}_{b \alpha}$ and $\mathbf{H}_{b \alpha}$ are the fields produced anywhere in space by i_{α}.
\square For the dc current distribution, we define the partial self-inductances and the partial mutual inductances using

$$
\begin{equation*}
m_{\alpha \beta} i_{\alpha} i_{\beta}=\iiint_{V} \mathbf{B}_{b \alpha} \cdot \mathbf{H}_{b \beta} d v \tag{3}
\end{equation*}
$$

\square A loop α is formed by the branches of the subset $N_{\alpha} \subset\{1, \ldots, N\}$. For a branch $p \in N_{\alpha}$, let us define $\varepsilon_{\alpha}(p)$ by: $\varepsilon_{\alpha}(p)=1$ if the branch p and the loop α have the same reference direction, $\varepsilon_{a}(p)=-1$ otherwise. For computing the dc inductance matrix $\mathbf{L}_{D C}=\left[L_{D C \alpha \beta}\right]$, we can use known partial inductance and

$$
\begin{equation*}
L_{D C \alpha \beta}=\sum_{p \in N_{\alpha}} \sum_{q \in N_{\beta}} \varepsilon_{\alpha}(p) \varepsilon_{\beta}(q) m_{p q} \tag{4}
\end{equation*}
$$

\square The proof of (4) uses the fact that the current distributions are independent of each other.
\square Example: 2 loops, 5 branches.

$$
\begin{aligned}
& L_{D C 11}=m_{44}+m_{55}-2 m_{45} \\
& L_{D C 22}=m_{11}+m_{22}+m_{33}+2 m_{12}-2 m_{13}-2 m_{23} \\
& L_{D C 12}=L_{D C 21}=m_{14}-m_{15}+m_{24}-m_{25}-m_{34}+m_{35}
\end{aligned}
$$

\square For a $(n+1)$-conductor uniform MTL, for a uniform current distribution and for $L \gg$ transverse dimensions, $\mathbf{L}_{D C}$ is nearly proportional to L. The p.u.l. inductance matrix is

$$
\begin{equation*}
\mathbf{L}_{D C}^{\prime}=\lim _{L \rightarrow \infty} \frac{\mathbf{L}_{D C}}{L} \tag{5}
\end{equation*}
$$

$\square \mathbf{L}_{D C}$ and $\mathbf{L}_{D C}^{\prime}$ are positive definite real symmetric $n \times n$ matrices.

3. Modified partial inductance

\square At this stage, to obtain the dc p.u.l. inductance matrix $\mathbf{L}_{D C}^{\prime}$ of an interconnection made of parallel straight conductors, we can compute $\mathbf{L}_{D C}$ versus L using partial inductances, and then apply (5).
\square This route is strange and it leads to numerical problems.
\square To avoid it, we define the modified partial inductance of the parallel conductors α and β, denoted by $m_{\alpha \beta}^{\prime}$, as

$$
\begin{equation*}
m_{\alpha \beta}^{\prime}=\lim _{L \rightarrow \infty}\left(\frac{m_{\alpha \beta}}{L}-\frac{\mu_{0}}{2 \pi} \ln \frac{2 L}{L_{0}}\right) \tag{6}
\end{equation*}
$$

where L_{0} is an arbitrary length, which must be the same for all modified partial inductances used in the same formula.
\square To obtain the dc p.u.l. inductance matrix $\mathbf{L}_{D C}^{\prime}=\left[L_{D C \beta}\right]$, we can use known modified partial inductances and

$$
\begin{equation*}
L_{D C \alpha \beta}^{\prime}=\sum_{p \in N_{\alpha}^{\prime}} \sum_{q \in N_{\beta}^{\prime}} \varepsilon_{\alpha}(p) \varepsilon_{\beta}(q) m_{p q}^{\prime} \tag{7}
\end{equation*}
$$

where the loop α contains two branches extending from $z=0$ to $z=L$, the branches of the subset $N_{\alpha}^{\prime} \subset\{1, \ldots, N\}$.
\square Modified partial self-inductance of a conductor of rectangular cross section:

$$
\begin{align*}
m_{\alpha \alpha}^{\prime}=\frac{\mu_{0}}{4 \pi} & \left(-\ln \frac{t^{2}+w^{2}}{L_{0}{ }^{2}}-\frac{4}{3}\left\{\frac{t}{w} \tan ^{-1} \frac{w}{t}+\frac{w}{t} \tan ^{-1} \frac{t}{w}\right\}\right. \\
& \left.+\frac{1}{6}\left\{\frac{t^{2}}{w^{2}} \ln \left(1+\frac{w^{2}}{t^{2}}\right)+\frac{w^{2}}{t^{2}} \ln \left(1+\frac{t^{2}}{w^{2}}\right)\right\}+\frac{13}{6}\right) \tag{8}
\end{align*}
$$

\square Modified partial mutual inductance of conductors of rectangular cross section:
The cross-section of the conductor α extending from $x=x_{\alpha}$ to $x=x_{\alpha}+t_{\alpha}$ and from $y=y_{\alpha}$ to $y=y_{\alpha}+w_{\alpha}$, where $w_{\alpha}>0$ and $t_{\alpha}>0, m_{\alpha \beta}^{\prime}$ is given by

$$
\begin{equation*}
m_{\alpha \beta}^{\prime}=\frac{\sum_{I=1}^{2} \sum_{J=1}^{2} \sum_{L=1}^{2} \sum_{M=1}^{2}(-1)^{I+J+L+M}\left(X_{\alpha_{I}}-X_{\beta_{L}}\right)^{2}\left(Y_{\alpha J}-Y_{\beta_{M}}\right)^{2} m_{I, J, L, M}^{\prime}}{4 t_{\alpha} t_{\beta} w_{\alpha} w_{\beta}} \tag{9}
\end{equation*}
$$

where
and

$$
\begin{equation*}
\mathbf{X}_{\alpha}=\binom{x_{\alpha}}{x_{\alpha}+t_{\alpha}} \quad \mathbf{Y}_{\alpha}=\binom{y_{\alpha}}{y_{\alpha}+w_{\alpha}} \tag{10}
\end{equation*}
$$

$$
m_{I, J, L, M}^{\prime}=\left\{\begin{array}{l}
0 \text { if }\left(Y_{\alpha_{J}}-Y_{\beta_{M}}\right)\left(X_{\alpha_{I}}-X_{\beta_{L}}\right)=0 \tag{11}\\
\ell^{\prime}\left(\left|Y_{\alpha_{J}}-Y_{\beta_{M}}\right|,\left|X_{\alpha_{I}}-X_{\beta_{L}}\right|\right) \text { else }
\end{array}\right.
$$

where $\ell^{\prime}(y, x)$ is the modified partial self-inductance of a conductor of uniform rectangular cross-section of width y and thickness x, given by (8).

4. Computation of p.u.l. inductance matrices

\square This configuration can be used to compute the $L_{D C \alpha \beta}$ of any interconnection having a GC made of a single rectangular conductor.

\square For this problem, $\mathbf{L}_{D C}^{\prime}$ is exactly given by

$$
\begin{equation*}
L_{D C \alpha \alpha}^{\prime}=m_{\alpha \alpha}^{\prime}+m_{33}^{\prime}-2 m_{\alpha 3}^{\prime} \tag{12}
\end{equation*}
$$

and

$$
L_{D C 12}^{\prime}=L_{D C 21}^{\prime}=m_{12}^{\prime}-m_{13}^{\prime}-m_{23}^{\prime}+m_{33}^{\prime}
$$

\square It is interesting to compare $\mathbf{L}_{D C}^{\prime}$ with the high-frequency p.u.1. external inductance matrix, denoted by \mathbf{L}_{0}^{\prime}.

The figure shows the entries of $\mathbf{L}_{D C}^{\prime}$ and \mathbf{L}_{0}^{\prime}, computed as a function of b, for the multiconductor microstrip defined in the introduction: the diagonal entries of $\mathbf{L}_{D C}^{\prime}(2$ curves A), the diagonal entries of \mathbf{L}_{0}^{\prime} (2 curves B), the non-diagonal entries of $\mathbf{L}_{D C}^{\prime}(4$ curves C) and the non-diagonal entries of $\mathbf{L}_{0}^{\prime}(4$ curves $D)$.

\square This configuration can be used to compute the $L_{D C \alpha \beta}$ of any interconnection having a GC made of two superimposed and identical rectangular conductors.

\square For this problem, $\mathbf{L}_{D C}^{\prime}$ is exactly given by

$$
\begin{equation*}
L_{D C \alpha \alpha}^{\prime}=m_{\alpha \alpha}^{\prime}-m_{\alpha 3}^{\prime}-m_{\alpha 4}^{\prime}+\frac{m_{33}^{\prime}+m_{44}^{\prime}+2 m_{34}^{\prime}}{4} \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
L_{D C 12}^{\prime}=m_{12}^{\prime}-\frac{m_{13}^{\prime}+m_{23}^{\prime}+m_{14}^{\prime}+m_{24}^{\prime}}{2}+\frac{m_{33}^{\prime}+m_{44}^{\prime}+2 m_{34}^{\prime}}{4} \tag{15}
\end{equation*}
$$

The figure shows the entries of $\mathbf{L}_{D C}^{\prime}$ and \mathbf{L}_{0}^{\prime}, computed as a function of b, for the multiconductor stripline defined in the introduction: the diagonal entries of $\mathbf{L}_{D C}^{\prime}(2$ curves A), the diagonal entries of $\mathbf{L}^{\prime}{ }_{0}(2$ curves B), the non-diagonal entries of $\mathbf{L}_{D C}^{\prime}$ (4 curves C) and the non-diagonal entries of $\mathbf{L}_{0}^{\prime}(4$ curves $\mathbf{D})$.

5. Asymptotic expansions for a broad ground plane

\square We now want to explore the behavior of $\mathbf{L}_{D C}^{\prime}$ as $b \rightarrow \infty$.
\square For the generic multiconductor microstrip configuration, we obtain:

$$
\begin{equation*}
L_{D C \alpha \beta}^{\prime}=L_{D C \beta \alpha}^{\prime}=m_{\alpha \beta}^{\prime}+\frac{\mu_{0}}{4 \pi}\left[2 \ln \frac{b}{4 L_{0}}+1+\frac{E_{\alpha \beta}}{b}+\frac{a^{2}}{3 b^{2}} \ln \frac{b}{a}+\frac{F_{\alpha \beta}}{b^{2}}\right]+O\left(\frac{1}{b^{3}}\right) \tag{16}
\end{equation*}
$$

where

$$
\left\{\begin{align*}
E_{\alpha \beta} & =\pi \frac{4 a+3 t_{\alpha}+6 h_{\alpha}+3 t_{\beta}+6 h_{\beta}}{3} \tag{17}\\
F_{\alpha \beta} & =-\frac{71 a^{2}}{36} \\
& -\frac{12 h_{\alpha}^{2}+12\left(a+t_{\alpha}\right) h_{\alpha}+6 a t_{\alpha}+4 t_{\alpha}^{2}-w_{\alpha}^{2}-12 c_{\alpha}^{2}}{3} \\
& -\frac{12 h_{\beta}^{2}+12\left(a+t_{\beta}\right) h_{\beta}+6 a t_{\beta}+4 t_{\beta}^{2}-w_{\beta}^{2}-12 c_{\beta}^{2}}{3}
\end{align*}\right.
$$

\square For the generic multiconductor stripline configuration we get:

$$
L_{D C \alpha \beta}^{\prime}=m_{\alpha \beta}^{\prime}+\frac{\mu_{0}}{4 \pi}\left[\begin{array}{l}
2 \ln \frac{b}{4 L_{0}}+1+\frac{U}{b}+\frac{a^{2}}{6 b^{2}} \ln \frac{b}{a}+\frac{(H+2 a)^{4}}{12 a^{2} b^{2}} \ln \frac{b}{H+2 a} \tag{18}\\
+\frac{H^{4}}{12 a^{2} b^{2}} \ln \frac{b}{H}-\frac{(H+a)^{4}}{6 a^{2} b^{2}} \ln \frac{b}{H+a}+\frac{V_{\alpha \beta}}{b^{2}}
\end{array}\right]+O\left(\frac{1}{b^{3}}\right)
$$

where

$$
\left\{\begin{align*}
U= & \pi \frac{2 a+3 H}{3} \\
V_{\alpha \beta} & =\frac{75 H^{2}+150 a H+4 a^{2}}{36} \tag{19}\\
& -\frac{1}{3}\left(6\left(H-h_{\alpha}-t_{\alpha}\right)^{2}+6 h_{\alpha}^{2}+6\left(a+t_{\alpha}\right)\left(H-t_{\alpha}\right)+6 a t_{\alpha}+4 t_{\alpha}^{2}-w_{\alpha}^{2}-12 c_{\alpha}^{2}\right) \\
& -\frac{1}{3}\left(6\left(H-h_{\beta}-t_{\beta}\right)^{2}+6 h_{\beta}^{2}+6\left(a+t_{\beta}\right)\left(H-t_{\beta}\right)+6 a t_{\beta}+4 t_{\beta}^{2}-w_{\beta}^{2}-12 c_{\beta}^{2}\right)
\end{align*}\right.
$$

- By (16) and (18), all entries of $\mathbf{L}_{D C}^{\prime}$ are equivalent to $\left(\mu_{0} /(2 \pi)\right) \ln b$ as $b \rightarrow \infty$. This corresponds to an oblique asymptote in a semi-log plot, presenting a slope of about 461 nH per decade of b.

For the multiconductor stripline, the diagonal entries of $\mathbf{L}_{D C}^{\prime} \quad(2$ curves A), their asymptotic expansions (2 curves B), the non-diagonal entries of $\mathbf{L}_{D C}^{\prime}(4$ curves $C)$ and their asymptotic expansions (4 curves D) as a function of b.

6. Conclusion

\square Modified partial inductances can be computed for any cross-section of the conductors and used to directly obtain $\mathbf{L}_{D C}^{\prime}$.
\square In the special case where this cross-section is a set of rectangles having an horizontal side, we have provided exact analytical expressions for them.
\square We have obtained exact analytical expressions for the entries of $\mathbf{L}_{D C}^{\prime}$ in the cases of a generic microstrip configuration and a generic stripline configuration.
$\square \mathbf{L}_{D C}^{\prime}$ may have negative non-diagonal entries, in a range of values of b.
\square We have computed accurate asymptotic expansions for large values of b, for both generic configurations.
$\square \mathbf{L}_{D C}^{\prime}$ is only defined for a finite b, because all entries of $\mathbf{L}_{D C}^{\prime}$ are equivalent to $\left(\mu_{0} /(2 \pi)\right) \ln b$ as $b \rightarrow \infty$.

